№1 За угол между диагоналями принимается больший из углов,значит им будет угол ВОС. Угол АВО=СРО=30гр. как накрест лежащие при параллельных прямых АР и ВС.Угол СВО =90-30=60гр. .Значит уол ВСО тоже равен 60 гр. так как точкой пересечения диагонали прямоугольника делятся на равные отрезки т.е ВО=СО .Из этого следует,что треугольник ВОС равнобедренный значит угол ВОС=180-(60+60)=60гр.
№2 Из вершины С опустим высоту К на сторону АД,получаем АК+КД=10 КД=10-6=4. Рассотрим треугольник СДК ,который прямоугольный и угол СДК=45гр.,значит Треугольник еще и равнобедренный ,получаем КД=СК=4,а СК=ВА ВА-меньшая боковая сторона=4.
№3 Так как КЕ биссектриса угол МКЕ=ЕКР,а угол МЕК=ЕКР(как накрест лежащие)=МКЕ, значит треугольник КМЕ равнобедренные,где МЕ=КМ=10 ЕN-обозначим за х,значит МN=КР=10+х, значит Периметр=10*2+2*(10+х)=52 решаем уравнение х=6,КР=10+6=16
Сначала докажем, что точки А₁, В₁ и М₁ лежат на одной прямой.
Параллельные прямые АА₁ и ВВ₁ задают плоскость. Точка М принадлежит этой плоскости. Прямая ММ₁ проходит через точку М и параллельна прямой ВВ₁, лежащей в плоскости АВВ₁, значит и ММ₁ лежит в этой плоскости. Плоскость АВВ₁ пересекает плоскость α по прямой b, значит их общие точки А₁, В₁ и М₁ лежат на этой прямой.
В плоском четырехугольнике АА₁В₁В две стороны параллельны, значит это трапеция. М - середина боковой стороны трапеции, ММ₁ параллельна основаниям трапеции, значит ММ₁ - средняя линия. ММ₁ = (АА₁ + ВВ₁)/2 = (3 + 17)/2 = 10 см
кут оав=кут Ф=40