P = 18 см, S = 10 см²
Объяснение:
Для начала, нужно выделить две формулы, по которым мы будем находить P и S трапеции.
Для нахождения P трапеции, нам всего лишь нужно сложить все стороны и посчитать.
Для нахождения S трапеции, есть формула (a+b)/2 * h.
Ищем периметр:
1. AB = CD= 4 см ( т.к. углы А и D равны, следовательно стороны при основании будут равны ).
2. Проведём два перпендикуляра из точек B и C. У нас получатся два прямоугольных треугольника и прямоугольник ( еще не доказано )
3. ∠ABK = 90 - 60 = 30° ( т.к. ∠А уже равен 90°) ⇒ AK = 4:2 = 2 см ( т.к. катет, лежащий напротив угла в 30° будет равен половине гипотенузы ).
4. Треугольник ABK и HCD равны по катету и углу ( AB=CD, ∠A=∠D ) ⇒ AK=HD=2 см.
5. Четырёхугольник KBCH - прямоугольником ( ∠K = ∠B и ∠H = ∠C, т.к. являются односторонними углами, следовательно в сумме они будут получать 180°, а 180-90=90 ) ⇒ BC = KH и BK = CH.
6. AD = AK + HD + KH = 2+2+3 = 7 см.
6. P трапеции = BC + 2CD + AD = 3+4*2+7 = 18 см.
Ищем площадь:
S =
Нужно найти высоту:
1. По теореме пифагора:
BK² = AB² - AK²
BK² = 4² - 2²
BK² = 12
BK = = 2
см
2. S = см²
Построение сечения.
1. Проводим пряную ЕF до пересечения с продолжениями отрезков
СВ (F1) и СD (Е1). ЕF -линия пересечения секущей плоскости и плоскости основания.
2. Проводим прямую НF1, пересечение этой прямой с ребром ВВ1 -
точка G. GH - линия пересечения секущей плоскости и грани ВВ1С1С.
3. Соединим точки F и G. FG - линия пересечения секущей плоскости и грани АА1В1В.
4. Плоскости АВСD и А1В1С1D1 параллельны, значат линия НК пересечения секущей плоскости и грани А1В1С1D1 будет проходить через точку Н параллельно прямой ЕF.
5. Проводим прямую КЕ1, пересечение этой прямой с ребром DD1 -точка Р. КР -линия пересечения секущей плоскости и грани DD1C1C.
6. Соединим точки Р и Е. РЕ -линия пересечения секущей плоскости и грани АА1D1D.
Нахождение угла.
Угол между плоскостью сечения EFGHKP и плоскостью А1ВD -угол
A1RQ = α, образованный пересечением указанных плоскостей плоскостью, перпендикулярной к обеим плоскостям, то есть перпендикулярной к линии пересечения МN данных двух плоскостей.
Заметим, что этот угол равен углу А1ОС1, так как QL параллельна С10
(так как LО=С1Q, потому что EF - средняя линия прямоугольного треугольника АЕF и АL=LO=C1Q). Половина диагонали основания
(квадрата со стороной а) СО равна а*√2/2.
А тангенс угла С10С равен СС1/СО = а*2/а*√2 = √2.
По таблице тангенсов угол С10С ≈ 55°. Значит и симметричный с ним угол А1ОА =55°, их сумма равна 110°, а дополняющий эти два угла до развернутого искомый угол равен 180°-110°=70°.
ответ: угол между плоскостями FGНКРЕ и A1BD ≈ 70°.
ответ в приложенном рисунке.