Обозначим BC за x. По теореме синусов sin<a/BC=sin<b/AB=sin<c/AC. sin<c=sin<90=1, из чего следует, что AB/sin<90=25/1 равно sin<a/BC=0,6/x. Найдем x по пропорции: x=25*0,6=15.
По теореме Пифагора найдем сторону AC: AC^2=AB^2-BC^2=25^2-15^2=625-225=400; AC=20.
Площадь прямоугольного треугольника находится по формуле AC*BC/2. S=15*20/2=300/2=150.
Площадь любого треугольника можно найти по формуле A*H/2, где A-сторона, а H-опущенная на нее высота. В нашем случае S=AB*CH/2. Выразим CH: CH=S*2/AB; CH=150*2/25=300/25=12.
Пусть ad = a1d1 — равные биссектрисы, ∠a = ∠a1, ac = a1c1 — равные стороны. в δаdс = δa1d1c1: ∠dac = ∠d1a1c1 (т.к. ∠dac половина угла ∠bac ∠dac = ∠bac : 2 = ∠b1a1c1 : 2 = ∠d1a1c1). ad = a1d1, ас = а1с1. (по условию: ad = a1d1 — равные биссектрисы, aс = a1c1 — равные прилежащие стороны). таким образом, δadc = δа1d1c1 по 1-му признаку равенства треугольников, откуда ∠с = ∠с1 как лежащие против равных сторон в равных треугольниках) в δabcи δа1в1с1: ас = а1с1, ∠а = ∠а1 (по условию) ∠с = ∠с1. таким образом, δabc = δа1в1с1 по 1-му признаку равенства треугольников, что и требовалось доказать.
CH=12
Объяснение:
Обозначим BC за x. По теореме синусов sin<a/BC=sin<b/AB=sin<c/AC. sin<c=sin<90=1, из чего следует, что AB/sin<90=25/1 равно sin<a/BC=0,6/x. Найдем x по пропорции: x=25*0,6=15.
По теореме Пифагора найдем сторону AC: AC^2=AB^2-BC^2=25^2-15^2=625-225=400; AC=20.
Площадь прямоугольного треугольника находится по формуле AC*BC/2. S=15*20/2=300/2=150.
Площадь любого треугольника можно найти по формуле A*H/2, где A-сторона, а H-опущенная на нее высота. В нашем случае S=AB*CH/2. Выразим CH: CH=S*2/AB; CH=150*2/25=300/25=12.
ответ: 12