М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
кисел5467
кисел5467
04.09.2021 01:18 •  Геометрия

Вшестиугольной призме все ребра которой равны 6,найдите угол между прямыми де и f1а1 . ответ дайте в градусах.

👇
Ответ:
Huysosimoy
Huysosimoy
04.09.2021
ну ответ-то 60, но угол между прямой и плоскостью в данном случае, по-моему, СBO
4,7(76 оценок)
Открыть все ответы
Ответ:
annachernoirova
annachernoirova
04.09.2021
(Смотри рисунок).
Дано:
АВСД - трапеция
ЕФ - средняя линия
ЕФ1=12
ФФ1=6
угол 1=углу2
Найти S

Угол 1=углу3(как внутренние накрест лежащие при параллельных прямых ВС и АД и секущей ВД). Так как угол 3=углу2, то ΔВСД - равнобедренный и ВС=СД=АВ.
ЕФ1 - средняя линия треугольника АВД ⇒ АД по свойству средней линии треугольника рана 2×12=24.
ФФ1 - средняя линия треугольника ВСД ⇒ ВС=2×6=12.
Значит СД и АВ равны 12.
Найдем АН.
ВС=НК=12.
АН+КД=24-12=12.
Так как трапеция равнобедренная, то АН=КД=12/2=6.
Рассмотрим ΔАВН - прямоугольный.
По теореме Пифагора ВН=\sqrt{ 12^{2}- 6^{2}=144-36=108 }
Площадь трапеции - это средняя линя(которая равна 12+6=18)×высоту
S=18×\sqrt{108}=108 \sqrt{3}
4,5(54 оценок)
Ответ:
Koopyosnik
Koopyosnik
04.09.2021
1.В основании пирамиды лежит квадрат, проекция бокового ребра на основания даст половину диагонали квадрата
(d = b*cos60=16*1/2=8 (см) ),
диагональ квадрата равна 16 (см), тогда сторона квадрата равна 
 a = \frac{d}{ \sqrt{2} } = \frac{16}{ \sqrt{2} } = \frac{16 \sqrt{2} }{2} =8 \sqrt{2}

2. Определяем Площадь основания: 

S (осн) = a² = (8√2)² = 64*2 = 128 (см²).

3. Периметр основания:

P (осн) = a * n = 8√2 * 4 = 32√2 (где n - n-угольный, в данном случае у нас четырёхугольной)

4. Апофема(гипотенуза) - ищется с прямоугольного треугольника

Для апофемы нужно найти высоту и радиус вписанной окружности основания

r_2 = \frac{ \frac{a}{2} }{tg \frac{180}{n} } = \frac{8 \sqrt{2}/2 }{tg45} = \frac{8 \sqrt{2}/2 }{ } =4 \sqrt{2} - это радиус вписанного окружности  основания

R_2 = \frac{r_2}{2} = \frac{4 \sqrt{2}}{2} =2\sqrt{2} - радиус описанной окружности основания

h = \sqrt{b^2-R_2^2} = \sqrt{16^2-(2\sqrt{2})^2} = \sqrt{256-8} = \sqrt{248} =2 \sqrt{62}

И так апофема

f= \sqrt{h^2+r^2_2} = \sqrt{(2 \sqrt{62})^2+ (4\sqrt{2})^2} = \sqrt{62*2+16*2} =\\= \sqrt{124+32}=\sqrt{156} =2 \sqrt{39}

3. Площадь боковой поверхности

S= \frac{1}{2} p(OCH)*f= \frac{1}{2} *32 \sqrt{2} *2 \sqrt{39} =32 \sqrt{78}

ответ: 32√78 (см²).
4,4(58 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ