Из точки удаленной плоскости на расстояние 4 см , проведены две наклонные к этой плоскости длинной 5 см и 4 √(5)см.угол между проекциями этих наклонных равен 60* , найти расстояние между основаниями наклонных.
1. Центр описанной окружности равнобедренного треугольника лежит на высоте, проведённой к основанию треугольника.
Верно не всегда. Если угол при вершине треугольника тупой, то центр описанной окружности лежит на продолжении высоты, проведенной из вершины, вне треугольника.
2. Если в треугольнике АВС углы А и В равны соответственно 40 и 70, то внешний угол при вершине С этого треугольника равен 70.
Неверно. Внешний угол треугольника равен сумме двух внутренних, не смежных с ним. Значит внешний угол при вершине С равен 40° + 70° = 110°.
3. Все хорды одной окружности равны между собой.
Не верно. Хорда - отрезок, соединяющий любые две точки окружности. На рисунке АВ ≠ CD.
Пусть угол А - х, тогда угол B - тоже х, а угол Bad = x/2 рассмотрим треугольник АДБ - угол Б равен 180 градусов -( 110 градусов + x/2) рассмотрим треугольник АБС угол Б равен 180 - 2х потом вычитаем из первого уравнения второе, в правой части у нас ноль (углы Б сократились) в левой части 2x-110-x/2 иксы в правую часть градусы в левую часть переносим итого у нас получается 1,5х=110 градусов x=углу А= углу С= 73 и 1/3 градусов (в ответе переведи в десятичные 73,33) Угол б равен 180 градусов минус 2х = 33 и 1/3 градуса (33.33)
√(5^2-4^2)=3
√((4√5)^2-4^2)=8
расстояние между основаниями наклонных теорема косинусов = √(3^2+8^2-2*1/2*3*8)=7