Теорема: если прямая перпендикулярна радиусу и проходит через конец радиуса, лежащий на окружности, то она является касательной к окружности.
Дано: ω (О; ОА), прямая а, а⊥ОА, А∈а. Доказать: а - касательная к окружности. Доказательство: Радиус перпендикулярен прямой а. Перпендикуляр - это кратчайшее расстояние от центра окружности до прямой. Значит, расстояние от центра до любой другой точки прямой будет больше, чем до точки А, и значит все остальные точки прямой лежат вне окружности. Итак, прямая а и окружность имеют только одну общую точку А. Значит, прямая а - касательная к окружности.
Прямоугольная трапеция АВСД. АД делится пополам высотой ВН,следовательно,АН = НД. Угол А = 60 градусов,значит угол В равен 30 градусом(т.к. ВН перпендикуляр,то угол Н равен 90 градусов,а углы в треугольнике в сумме дают 180 градусов).Сторона лежащая напротив угол 30 градусов равен половине гипотинузы,значит АН равен 4(по условию большая боковая сторона равна 8,следовательно это сторона АВ). Треугольник равнобедренный и чтобы найти ВН воспользуемся теоремой Пифагора: ВН^2=АВ^2-АН^2=64-16= 48,значит ВН= корню из 48 или 4 корня из 3. Найдем площадь трапеции: СВ+АД/2*ВН=4+8/2*4 корня из 3=24 корня из 3. ответ: 24 корня из 3 см квадратных.
∠3 = ∠1 = 122° как соответственные при пересечении параллельных прямых а и b секущей с.
∠3 + ∠2 = 180°, так как эти углы смежные.
∠2 = 180° - ∠3 = 180° - 122° = 58°