Напротив большей стороны в треугольнике лежит больший угол. Если высота, биссектриса и медиана выходят из вершины угла между сторонами b и a, и b > a; то угол β > α; где α лежит напротив a, а β - напротив b; высота образует со сторонами углы 90° - β со стороной a и 90° - α со стороной b; Ясно, что 90° - α > 90° - β; то есть высота проходит "ближе" к меньшей стороне, чем биссектриса, которая делит угол пополам. медиана делит противоположную сторону пополам, а биссектриса - в пропорции a/b < 1; то есть основание биссектрисы лежит ближе к меньшей стороне, чем основание медианы. Это означает, что вся биссектриса между вершиной и противоположной стороной лежит "ближе" к меньшей стороне, чем медиана.
В треугольнике угол A=30° угол C=45° а высота BD= 4 см.
Найдите стороны треугольника.
----------------------
Высота ВД противолежит углу, равному 30º. ⇒ BD равна половине гипотенузы ∆ АВД.
Гипотенуза АВ=4*2=8 см.
АD найдем по т.Пифагора:
АD²=АВ²-ВD²
АD=√(64-16)=√48
АD=4√3 см
В прямоугольном ∆ ВDС острый угол ВСD=45º, ⇒ угол СВD=45º,
∆ СВD - равнобедренный, СD=ВD=4 см
По т.Пифагора ВС=4√2 см ( проверьте)
Тогда АС=АD+DС=4√3+4=4(√3+1)
Стороны равны
АВ=8,
ВС=4√2
AC =4(√3+1)
-----------
Если Вы уже изучали тригонометрические функции, то можно использовать их значение для заданных углов.
АВ=ВD:sin30º=4:0,5=8 см
BC=BD:sin45º=4:(√2)/2=4√2 см
АС=АD+DС=4√3+4=4(√3+1) см