М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
JaikHit533
JaikHit533
20.02.2023 13:50 •  Геометрия

Катети прямокутного трикутника дорівнюють 16 см і 12 см.знайти медіану проведену до гіпотенузи?

👇
Ответ:
sofiyaserysheva
sofiyaserysheva
20.02.2023
Гипотенуза равна 20
опускаем высоту равную 8 (по теореме Пифагора)
потом находим медиану
ответ:10
Катети прямокутного трикутника дорівнюють 16 см і 12 см.знайти медіану проведену до гіпотенузи?
4,4(38 оценок)
Открыть все ответы
Ответ:
горро1
горро1
20.02.2023

Объяснение:

По условию, AD - биссектриса, значит делит угол A треугольника ABC пополам (другими словами, угол CAD равен углу BAD = 60 : 2 = 30 градусов. Рассмотрим треугольник ABD: он прямоугольный, угол B равен 90 градусов, угол A - 30 градусов, значит, угол D равен 180 - (90 + 30) = 60 градусов. Гипотенуза AD = 8 см, катет BD лежит напротив угла в 30 градусов => BD = AD/2 = 8/2 = 4 см. Из прямоугольного треугольника ABC находим угол C. Он будет равен 30 градусам (угол B = 90 градусов, угол A = 60 градусов). Рассмотрим треугольник ADC: угол A равен 30 градусов, угол C тоже равен 30 градусов, значит, треугольник ADC - равнобедренный (AD = DC). Т.к. AD = 8 см, то DC тоже равна 8 см. Получается, BD = 4 см, DC = 8 см => BC = 4 + 8 = 12 см. ответ: 12 см.

4,8(98 оценок)
Ответ:
oleksandrskorbat
oleksandrskorbat
20.02.2023
Равнобедренного может? Если да , то вот .
В равнобедренном треугольнике биссектрисы, проведённые к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его биссектрисы. Треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, углы LAB и KBA равны как углы при основании равнобедренного треугольника, а углы LBA и KAB равны как половины углов при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB - биссектрисы треугольника ABC - равны. Теорема доказана.
Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать.
4,5(8 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ