Задание 2
Теорема Пифагора
a^2 + b^2 = c^2
c^2= 5^2 + 12^2 = 169
c = 13
c^ = 4√2^2 + 7^2 = 81
c = 9
c^2 = 0,7^2 + 2,4^ = 6,25
c = 2,5
c^2 = 5^2 + 6^2 = 61
c = √61
c^2 = 5/13^2 + 12/13 = 1
c = 1
Задание 3
P = a + a + a + a
делим диагонали пополам, получаются прямоугольные треугольники со сторонами 6 и 8, это египетский треугольник значит сторон ромба равна 10
по формуле находим, что Р = 10 + 10 + 10 + 10 = 40
во втором варианте также делим диагонали пополам и по теореме пифагора находим сторону ромба, она равна 25
также по формуле находим периметр
Р = 100
Задание 5
b^2 = c^2 - a^2
b^2 = 1,3^2 - 1,2^2 = 0,25
b = 0,5
b^2 = 9^2 - 7^2 = 32
b = √32
b^2 = 1,7^2 - 1,5^2 = 0,64
b = 0,8
b^2 = 2,5^2 - 2^2 = 2,25
b = 1.5
Задание 6
точно так же по теореме Пифагора находим диагональ, т.е гипотенузу
с^2 = 2,4^2 + 7^2 = 54,76
c = 7,4
c^2 = 50^2 + 12^2 = 2644
c = 51
c^2 = 8^2 + 1,5^2 =66,25
c = 8,1
1) угол M= углу R(потому что в параллелограмме противолежащие углы равны)=140/2=70 градусов
угол P= углу N= (180-70)= 110
2) так как сторона AD равна стороне DC данный параллелограмм является ромбом. а в ромбе диагонали это и биссектрисы
↓
угол ADC= углу ABC=ODC*2= 60*2=120 градусов
↓
угол BAD= углу DCB=180-ADC=180-120=60 градусов
углы найдены)
3)Примем за x сторону KF, тогда:
KM=FL=2x. KF=ML=x.
Составим и решим уравнение:
KM+FL+KF+ML=36
2x+2x+x+x=36
6x=36
x=6
KM=FL=2*6=12
KF=ML=6
4)Решаем аналогично 3 задаче.
так как сторона AB относится к стороне BC как один к двум.
значит: AB=CD=x, а BC=AD=2x
Составим уравнение и решим его:
2x+2x+x+x=36
6x=36
x=6
AB=CD=6. BC=AD=2*6=12
Трапеция ABCD; AD - большее основание, внизу; BC - меньшее основание, наверху. Перенесем диагональ BD на величину верхнего основания. Другими словами, через точку С проводим прямую, параллельную BD, до пересечения с продолжением AD в точке E. Получился равнобедренный треугольник ACE с боковыми сторонами, равными диагоналям трапеции, то есть AC=CE=50; при этом основание треугольника равно сумме оснований трапеции, то есть удвоенной средней линии; AE=96.
Расстояние между основаниями трапеции равно высоте этого треугольника, найдем ее. Поскольку высота CF равнобедренного треугольника ACE, опущенная на его основание, является также медианой, можем найти CF из прямоугольного треугольника ACF с теоремы Пифагора:
CF^2=AC^2-AF^2=50^2-48^2=4(25^2-24^2)=
4(25-24)(25+24)=4·49=(14)^2⇒CF=14
Замечание. Многие наряду с самым известным прямоугольным треугольником с целыми сторонами (египетским: 3-4-5) знают и несколько других, одним из них является треугольник 7-24-25, стороны которого в 2 раза меньше сторон нашего. Заметив это, можно было избежать применение теоремы Пифагора (впрочем, не знаю, что сказала бы на этот счет Ваша учительница)