1. Отрезок FK пересекает прямую РМ
2. При пересечении двух прямых, образуются смежные, а также вертикальные углы. Смежные углы это те, которые на одной прямой, а прямая у нас 180°. Поэтому, мы от 180° отнимаем известный нам угол (58°), находим смежный ему угол (122°). Остальные углы они являются вертикальными по отношению к этим. Поэтому, тот угол, который напротив угла в 58° равен 58°. А тот который напротив 122°,равен 122°.
3. K-середина отрезка CD, то следует что CK и KD равны, а значит 8:2=4см--CK, KD. CM=MK то 4:2=2см--CM,MK. ответ: CM=2cm; MK=2cm; KD=8cm.
Объяснение:
1. Отрезок FK пересекает прямую РМ
2. При пересечении двух прямых, образуются смежные, а также вертикальные углы. Смежные углы это те, которые на одной прямой, а прямая у нас 180°. Поэтому, мы от 180° отнимаем известный нам угол (58°), находим смежный ему угол (122°). Остальные углы они являются вертикальными по отношению к этим. Поэтому, тот угол, который напротив угла в 58° равен 58°. А тот который напротив 122°,равен 122°.
3. K-середина отрезка CD, то следует что CK и KD равны, а значит 8:2=4см--CK, KD. CM=MK то 4:2=2см--CM,MK. ответ: CM=2cm; MK=2cm; KD=8cm.
Объяснение:
Найдем высоту пирамиды. Поскольку боковые ребра наклонены под одинаковыми углами к плоскости основания, проекции этих ребер на основание совпадают (каждая из них находится из прямоугольного треугольника, одним из катетов которого является высота пирамиды, а углом напротив нее является угол в 30°). Отсюда следует, что вершина пирамиды проектируется в центр окружности, описанной вокруг треугольника, являющегося основанием пирамиды. Но этот треугольник по условию прямоугольный⇒центр описанной окружности лежит в середине гипотенузы, в точке D. AD=AB/2=a; H/AD=tg 30°; H=a/√3;
V =(1/3)S_(основания)·H=(1/3)(1/2)a·a√3·a/√3=a^3/6
ответ: a^3/6