В треугольнике две стороны равны 10 см и 17 см, а высота, опущенная на третью, равна 8 см. найти наименьшую из площадей возможных треугольников
Объяснение:
S(треуг)= 1/2*а*h. Пусть АВ=17 см,ВС=10 см, ВН=8 см, ВН ⊥АС.
Возможные треугольники с высотой равной 8 см это ΔАВС, ΔАВН, ΔВСН. У всех перечисленных треугольников одинаковая высота, значит чем меньше основание , тем меньше площадь треугольника.
АС >АН и АС>СН, тк АС это сумма АН и СН.
Т.к ВН-высота, то АВ и ВС наклонные . А чем больше длина наклонной , тем больше проекция : АВ>BC⇒АН>СН.
Значит СН<AH<AC.
ΔCВН-прямоугольный , по т. Пифагора НС=√(10²-8²)=6 (см)
S(ΔCBH)=1/2*6*8=48 (см²)
Висота дорівнює 8 см.
Объяснение:
Данний тип задач вирішується дуже просто, навіть устно. Покажу як це робиться в Варшавській школі: одна грань має площу 64 см² а друга 56 см², щоб отримати цю площу треба 8х8=64 , а іншу 7х8=56 , грані це прямокутники , в цих двох виразах є одне спільне, це величина 8 на яку ми множимо сторону основи паралелопипеда. Тому висота дорівнює 8.
Перевіримо: маємо об"єм фігури , в це площа основи * на висоту. Площа основи буде 8*7=56 см² , а висота 8 56*8=448 см³ а це відповідає умовам задачі.
Задачу можна рішати і іншим позначати невідомі сторони через Х і У , складати систему рівнянь , і врешті ми знайдемо це саме, але витратимо на це в тричі більше часу , ніж це я зробив. Удачі всім!