По плоскость альфа пересекает грани двугранного угла по прямым ab и ac. две пересекающиеся прямые лежащие в плоскости альфа перпендикулярны к ребру этого угла. докажите, что угол bac-линейный угол этого двугранного угла
Если прямая перпендикулярна двум непараллельным прямым, лежащим в одной плоскости, то она перпендикулярна всей плоскости, значит ребро двугранного угла перпендикулярно плоскости α. Отсюда следует, что принадлежащие плоскости α прямые АВ и АС перпендикулярны данному ребру. Линейным углом двугранного угла называется угол, сторонами которого являются лучи, по которым грани двугранного угла пересекаются плоскостью, перпендикулярной ребру двугранного угла, значит ∠ВАС - линейный угол этого двугранного угла.
А: Площадь основания So = a*h/2, где a - основание треугольника - по условию 4 см, h - высота правильного треугольника h = a*корень(3)/2 = 2*корень(3). Таким образом, искомая площадь основания So = 4*2*корень(3)/2 = 4*корень(3) или примерно 7 см2
Б: Площадь боковой пов. Sб = 3*a*p/2, где a*p/2 - площадь одной боковой треугольной грани, a - основание треугольника (4 см), p - высота треугольника (апофема = 8 см). Искомая площадь Sб = 3*4*8/2 = 48 см2
В: Объем пирамиды V = h*So/3, где h - высота пирамиды (6 см), So - уже найденная площадь ее основания (4*корень(3) см). Искомый объем V = 6*4*корень(3) = 24*корень(3) или примерно 41.5 см3
Линейным углом двугранного угла называется угол, сторонами которого являются лучи, по которым грани двугранного угла пересекаются плоскостью, перпендикулярной ребру двугранного угла, значит ∠ВАС - линейный угол этого двугранного угла.