М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
123456789Ad1jssjsj
123456789Ad1jssjsj
14.01.2021 13:56 •  Геометрия

Решить . №1 радиусы двух окружностей равны 3см и 8см. найдите растояние мужду их центрами если окружности имеют: 1) внутреннее косание 2) внешнее косание №2 расстояние между цунтрами двух окружностей если их радийсы равны: 1) 7см и 5см 3) 10см и 5см 2) 16см и 2см 4) 7см и 7см наверно лёгкие , но я их не могу решить, я не была в школе (болела) учитель не будет учить и повторять сомной всё что класс уже так что .

👇
Ответ:
OskarWild
OskarWild
14.01.2021
Первый и второй номер решается по одинаковым формулам, если я тебя правильно понял.
для того, чтобы найти расстояние между центрами окружностей со внутренним касанием нужно вычесть из большего радиуса меньший.
для нахождения расстояния между окружностями со внешним касанием необходимо сложить два данных радиуса.

Во втором задание ты не написала как окружности расположены, поэтому я составил таблицу:
первая колонка- номер вопроса
вторая колонка- а) внутреннее касание
третья - б) внешнее касание.
и дальше по строкам решение с ответом для каждого касания.

Решить . №1 радиусы двух окружностей равны 3см и 8см. найдите растояние мужду их центрами если окруж
4,4(40 оценок)
Открыть все ответы
Ответ:

a) \frac{\sqrt{3} }{3}; ~~b) \frac{1}{3}

Объяснение:

Смотри прикреплённый рисунок.

Пусть а = 8 см - ребро тетраэдра

a) В основании АВС проведём высоту АЕ ⊥ ВС.    АЕ = 0,5а√3;

Опустим высоту SO на плоскость АВС.

AO=\frac{2}{3} AE = \frac{2}{3}\cdot a\frac{\sqrt{3} }{2} = \frac{a\sqrt{3} }{3}.

Угол между прямой SA и плоскостью АВС есть угол SAO

b) В основании АВС проведём высоту BK ⊥ AС.    BK = 0,5а√3;

Опустим высоту SO на плоскость АВС.

KO= \dfrac{1}{2} BK = \dfrac{1}{3}\cdot \dfrac{a\sqrt{3} }{2} =\dfrac{a\sqrt{3} }{6}

Проведём в грани SAC апофему SK = 0,5а√3

Угол между плоскостями SAC и АВС есть угол SKO между апофемой SK и высотой основания ВК как угол между двумя перпендикулярами, восставленными из точки К к линии пересечения АС плоскостей  SAC и АВС

Поскольку тетраэдр правильный, то углы между  любой боковой плоскостью и плоскостью основания  равны между собой. И косинус между плоскостью SBC и плоскостью АВС равен 1/3.


ГЕОМЕТРИЯ ОДНО ЗАДАНИЕ Дан правильный тетраэдр SABC. Выполните рисунок. Найдите: а) косинус угла меж
4,4(85 оценок)
Ответ:
вета18С
вета18С
14.01.2021
  Дано :  <ABC = <ABD =<CBD =90; AB =1 ;  BC =3 ; CD =4 .
1)
а) проекцию BD на плоскость ABC   = 0,  т.к .   BD  ┴    (ABC)    DC┴  BA  DC ┴   BC);
 б)  AB ┴   (DBC)      т.к .  AB┴ BD  и  AB┴ BC.  
Значит   <ADB  это   угол  между прямой AD и плоскостью DBC  
следовательно   :
  из  ΔADB :     sin (<ADB) =AB/AD . 
ΔCBD :      DB = √(DC² -BC²) =√(4² -3²)  =√7.
ΔABD :  AD =√(DB² +AB²) =√(7 +1) =2√2 .

sin (<ADB) =AB/AD  =1/(2√2) =(√2 ) /4 .

г)    (BCD) перпендикулярно (BCA)
BCD проходит  по прямой  BD    которая   ┴( ABC) .

2)   ABCD_ ромб  ;
AB=BC =CD =DA = BH =b ; < A =< C =60° ;  HB ┴(BAC) или тоже самое
HB ┴(ABCD)
а) Определите угол между плоскостями: BHC и DBY .
Y --- неизвестно
Определить угол между плоскостями: BHC и DBH :
(BHC) ^  (DBH) =  <DBE =60° .  DB ┴ BH ,CB┴ BH   лин.  угол    [ HB ┴((ABCD)⇒HB ┴BD  
б) Определить   угол между плоскостями  DНC и BAC  .
В   ΔHDC    проведем  HE ┴ CD   ( E∈ [CD] )   и E  соединим с вершиной B.
 <BEH  будет искомый угол ; 
tq(<BEH) =BH/BE = b :(b*√3)/2  =2/√3 ; [Δ BEC :   B E =BC*sin60°=b*√3/2 ] .

<BEH = arctq(2/√3).
4,7(50 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ