Объяснение:
Смотри прикреплённый рисунок.
Пусть а = 8 см - ребро тетраэдра
a) В основании АВС проведём высоту АЕ ⊥ ВС. АЕ = 0,5а√3;
Опустим высоту SO на плоскость АВС.
Угол между прямой SA и плоскостью АВС есть угол SAO
b) В основании АВС проведём высоту BK ⊥ AС. BK = 0,5а√3;
Опустим высоту SO на плоскость АВС.
Проведём в грани SAC апофему SK = 0,5а√3
Угол между плоскостями SAC и АВС есть угол SKO между апофемой SK и высотой основания ВК как угол между двумя перпендикулярами, восставленными из точки К к линии пересечения АС плоскостей SAC и АВС
Поскольку тетраэдр правильный, то углы между любой боковой плоскостью и плоскостью основания равны между собой. И косинус между плоскостью SBC и плоскостью АВС равен 1/3.
для того, чтобы найти расстояние между центрами окружностей со внутренним касанием нужно вычесть из большего радиуса меньший.
для нахождения расстояния между окружностями со внешним касанием необходимо сложить два данных радиуса.
Во втором задание ты не написала как окружности расположены, поэтому я составил таблицу:
первая колонка- номер вопроса
вторая колонка- а) внутреннее касание
третья - б) внешнее касание.
и дальше по строкам решение с ответом для каждого касания.