Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Осноположником геометрии можно считать Евклида. В начале XX века великий французский архитектор Ле Корбюзье сказал: «Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Все вокруг – геометрия». В развитии Геометрия можно указать четыре основных периода, переходы между которыми обозначали качественное изменение Геометрии.
Первый — период зарождения Геометрии как математической науки — протекал в Древнем Египте, Вавилоне и Греции примерно до 5 в. до н. э. Первичные геометрические сведения появляются на самых ранних ступенях развития общества. Зачатками науки следует считать установление первых общих закономерностей, в данном случае — зависимостей между геометрическими величинами. Этот момент не может быть датирован. Самое раннее сочинение, содержащее зачатки Геометрия, дошло до нас из Древнего Египта и относится примерно к 17 в. до н. э., но и оно, несомненно, не первое. Геометрические сведения того периода были немногочисленны и сводились прежде всего к вычислению некоторых площадей и объёмов. Они излагались в виде правил, по-видимому, в большой мере эмпирического происхождения, логические же доказательства были, вероятно, ещё очень примитивными. Геометрия, по свидетельству греческих историков, была перенесена в Грецию из Египта в 7 в. до н. э. Здесь на протяжении нескольких поколений она складывалась в стройную систему. Процесс этот происходил путём накопления новых геометрических знаний, выяснения связей между разными геометрическими фактами, выработки приёмов доказательств и, наконец, формирования понятий о фигуре, о геометрическом предложении и о доказательстве.Геоме́трия (от др. ... γεωμετρία, от γῆ — земля и μετρέω — измеряю) — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения. Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида.
Объяснение:
Найдем длины сторон треугольника по формуле:
d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}d=(x2−x1)2+(y2−y1)2
а)
\begin{gathered}|AB|=\sqrt{(2-1.5)^2+(2-1)^2}=\sqrt{1.25}=0.5\sqrt{5}\\ |AC|=\sqrt{(2-1.5)^2+(0-1)^2}=\sqrt{1.25}=0.5\sqrt{5}\\ |BC|=\sqrt{(2-2)^2+(0-2)^2}=\sqrt{4}=2\end{gathered}∣AB∣=(2−1.5)2+(2−1)2=1.25=0.55∣AC∣=(2−1.5)2+(0−1)2=1.25=0.55∣BC∣=(2−2)2+(0−2)2=4=2
Периметр треугольника АВ:
P_{ABC}=AB+BC+AC=0.5\sqrt{5}+0.5\sqrt{5}+2=2+\sqrt{5}PABC=AB+BC+AC=0.55+0.55+2=2+5
б) тут вопрос не совсем понятен, скорее всего длину медианы АМ:
Координаты точки M найдем по формулам деления отрезка пополам.
\begin{gathered}x_M=\dfrac{x_B+x_C}{2}=\dfrac{2+2}{2}=2\\ \\ y_M=\dfrac{y_B+y_C}{2}=\dfrac{2+0}{2}=1\end{gathered}xM=2xB+xC=22+2=2yM=2yB+yC=22+0=1
Длина медианы АМ:
|AM|=\sqrt{(2-1.5)^2+(1-1)^2}=\sqrt{0.5^2}=0.5∣AM∣=(2−1.5)2+(1−1)2=0.52=0.5
СD = √6²+8²=√100=10см