треугольник АВС, уголВ=105, уголС=45, уголА=180-105-45=30, против наибольшего угла лежит наибольшая сторона=АС, наименьшая высота идет к наибольшей стороне - высота ВН, треугольник ВНС прямоугольный, уголНВС=90-уголС=90-45=45, треугольник ВНС равнобедренный, СН=ВН=х, треугольник АВН прямоугольный, АН=ВН/tgA=х/(1/√3)=х√3, АС=АН+НС=х√3+х=х(√3+1), площадь=1/2*АС*ВН, 2*(√3+1)=х(√3+1), х=2=ВН
если tg не проходили тогда - треугольник АВН прямоугольный, АВ=2*ВН=2*х (ВН лежит против угла 30 =1/2 гипотенузы), АН²=АВ²-ВН²=4х²-х²=3х², АН=х√3, а далее по тексту выше
Ну смотри, треугольники OCA и OBA прямоугольные,ведь угол OCA = 180-90=90 градусов и так же угол OBA(смежные углы) и эти треугольники равны по общей гипотенузе(OA) и катетам (OC=OB - радиусы) так как OC=OB=1/2OA(я думаю,что черточки равенства на отрезке OA немного не так добавлены,то есть по условию по сути должно быть дано,что середина отрезка OA лежит на окружности),то по свойству прямогуольного треугольника угол CAO = BAO = 30 градусов(Катет в прямоугольном треугольнике,лежащий против угла в 30 градусов равен половине гипотенузы). Значит угол BAC = 60 градусов
180°-30°-40° = 110°.
Т.к. AA1 - высота, то угол HA1C = 90° и т.к. BB1 - высота, то угол HB1C = 90°. Далее находим угол B1HA1. По теореме о сумме углов четырёхугольника: 360°-90°-90°-110° = 70°.
Угол B1HA1 = AHB - как вертикальные => угол АНВ = 70°.
ответ: 70°.