Алтын сақаның бас қаһарманы, идеялық нысанасы - халықтың арман-мұраты. Мұнда да халықтың аңсары ертегінің басты арқауы. Қазақ ертегілерінің бас қаһармандары аңшы-мерген, жауынгер-батыр, кенже бала, тазша бала, жалғыз бала және басқа әлеуметтік теңсіздіктегі бұқара өкілі. Бұлардың бәрі - халық арманынан әр кезде туған идеал кейіпкерлер. «Алтын сақадағы» бала сондай кейіпкер. Онда классикалық батырлық ертегіге тән белгілердің бәрі бар. Бала жұртта қалып қойған алтын сақасын алып келуге барып, жалмауыз кемпірге кез болған бала кемпірдің алдағанына сенбей, сақасын ат үстінен іліп алып, қаша жөнеледі. Мыстан кемпір тұра қуады. Осымен оқиға шиеленісе түседі. Бұл ертегіде де сайыста кейіпкер өз күшімен емес, керемет достарының арқасында жеңуі - батырлықтан гөрі қиял-ғажайып ертегінің заңдылықтарына жақындау.
В треугольнике ABC AC= BC, K - точка пересечения биссектрис треугольника, а O - точка, равноудаленная от всех вершин треугольника. Отрезок OK пересекает сторону AB в точке E и точкой пересечения делится пополам. Найдите углы треугольника ABC.
------
Точка К равноудалена от сторон треугольника, поэтому является центром вписанной окружности.
Точка О - равноудалена от вершин треугольника и является центром описанной окружности. Точка К лежит на высоте и медиане к АВ ( на срединном перпендикуляре), точка О лежит на срединном перпендикуляре к АВ, поэтому С, К, Е и О принадлежат одной прямой СО.
Т.к. отрезок КО пересекает АВ, точка О расположена вне треугольника.
Высота и медиана СЕ ⊥ АВ и делит его пополам.
Соединим точки К и О с вершинами А и В.
В получившемся четырехугольнике АКВО отрезки АЕ=ВЕ, КЕ=ОЕ.
Треугольники, на которые КО и АВ делят этот четырехугольник, прямоугольные и равны по двум катетам.
Следовательно, АК=ВК=ВО=АО, и АКВО - ромб. АВ - его диагональ и делит его углы пополам.
Пусть ∠ЕАО=α, тогда ∠КАЕ=α, а, так как АК - биссектриса угла САВ, то ∠САК=∠ЕАК, и ∠САЕ=2α.
∆СОА - равнобедренный ( по условию ОА=ОС=ОВ).
∠ОСА=∠ОАС=3α.
Сумма острых углов прямоугольного треугольника равна 90°.
В ∆ СЕА ∠САЕ+∠АСЕ=5α.
5α=90°, откуда α=90°:5=18°
∠САВ=∠СВА=2•18°=36°
∠АСВ=180°-2•36°=108°.