Объяснение:
1. Сумма углов правильного n-угольника равна 180 • n - 360 или 180 • (n-2). А теперь считаем:
180 • 14 - 360 = 2160 или 180 • (14 - 2) = 2160
2.Площадь параллелограмма равна: сторона * высоту, проведенную к ней. Следовательно: 84 \ 12 = 7 (см)
3.Обозначим треугольник как АВС где АС основание, ВК - высота. зная что АВ = 15, а ВК = 9 найдём АК по теореме пифагора:
АК в квадрате = АВ в квадрате-ВКв квадрате , АК в квадрате = 225 - 81
АК=корень из 144 , АК = 12.
так как треуг равнобедренный то АВ = СВ = 15 . Найдём КС по теореме пифагора:
КС в квадрате = ВС в кв-ВК в кв , КС в кв = 225-81=144 в корне
КС = 12, значит АС = АК+КС
АС=24 , найдём площадь по формуле
ответ:108 см кв
4.Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам.
Пусть ВО = х, тогда BD = 2x, AC = 2x +28, AO = x + 14
ΔABO: ∠O = 90°
По теореме Пифагора:
AB² = AO² + OB²
26² = (x + 14)² + x²
x² + 28x + 196 + x² - 676 = 0
2x² + 28x - 480 = 0
x² + 14x - 240 = 0
D/4 = 7² + 240 = 49 + 240 = 289 = 17²
x = -7 + 17 = 10 или x = -7 -17 = -24 не подходит по смыслу задачи
BD = 20 см
AC = 20 + 28 = 48 см
Sabcd = 1/2 ·BD · AC = 1/2 · 20 · 48 = 480 (см²)
5.фото
а 2 вариант на подобия этого подставить под формулы
Здравствуйте!
1).
∠1+∠2=180° смежные
∠1=2∠2 по условию
2∠2+∠2=180°
3∠2=180°
∠2=60°
∠1=2∠2=120°
2). Треугольники OBC и AOD равны по двум сторонам и углу между ними (AO=OB; CO=OD по условию; ∠СОВ=AOD -вертикальные) => ∠BCO=∠ABO как соответственные углы в равных треульниках.
AD || BC, т.к. накрест лежащие углы (∠BCO=∠ABO) равны. ЧТД.
3).
AB+AC+BC=34 см. (периметр)
AB=AC (боковые стороны)
BC (основание) =АВ+2 см= АС+ 2 см
BC+ (BC + 2 см)+(ВС+2 см) =34 см
3 ВС=30 см
ВС= 10 см
АВ=АС=10 см +2 см= 12 см
4). Треугольники АОВ и DOC равны по стороне и двум прилежащим углам (АО=ОD; ∠A=∠D по условию; ∠AOB=DOC вертикальные)
5). Проведем отрезок BD. Треугольники ABD и BDC- равнобедренные (AB=AD; BC=CD по условию) => ∠АВD=∠ADB и ∠CBD=∠CDB как углы при основании в р/б треугольнике.
∠В=∠АBD+∠CBD
∠D=∠ADB+∠CDB
А так как ∠АВD=∠ADB и ∠CBD=∠CDB, то ∠В=∠D.
6). Сумма острых углов прямогульного треугольника равна 90°.
∠A+∠B=90°
∠B=∠A-60° по условию
∠A+∠A-60°=90°
2∠A=150°
∠A=75°
∠B=∠A-60°=75°-60°=15°
7). Найдем ∠B. Сумма углов треугольника равна 180°.
∠А+∠В+∠С=180°
70°+55°+∠B=180°
∠B=180°-125°
∠B=55°
То есть ∠В=∠С=55°. А если углы в треуголнике равны, то треугольник равнобедренный. Основание BC.
7.1). Рассмотрим треугольник BMC. Он прямоугольный. Сумма острых углов прямоугольного треугольника равна 90°.
∠С+∠МBC=90°
55°+∠MBC=90°
∠MBC=35°
∠ABC=∠ABM+∠MBC
55°=∠ABM+35°
∠ABM=20°