КМ=LM=24/√5 см, ∠М=90°. МК1=ML1=КМ/2=12/√5 см. Треугольники КМК1 и LML1 равны по катетам и прямому углу, значит КК1=LL1 ⇒ OK1=OL1. В прямоугольном тр-ке КМК1 КК1²=КМ²+МК1²=(24²+12²)/5=720/5=144, КК1=12 см. Медианы треугольника точкой пересечения делятся в отношении 2:1 считая от вершины угла, значит ОК1=ОL1=KK1/3=12/3=4 см - это ответ.
Один катет лежит против угла в 60°, значит второй катет (а) лежит против угла в 90-60=30° и он равен половине гипотенузы (с): с=2а; по теореме Пифагора: (2а)^2=а^2+14^2; 3а^2=196; а=√196/3=14/√3; с=2*14/√3=28/√3; площадь равна половине произведения катетов: S=14*14/2√3=98/√3; площадь равна половине произведения гипотенузы (основания) на высоту: 98/√3=h*28/2√3; h=98/14=7; ответ: 7 Можно по другому: h=a*b/c высота равна произведению катетов, деленная на гипотенузу. Это можно установить из подобия треугольников.
Высота в равностороннем треугольнике является также медианой и биссектрисой, значит АД=ДС, угол АВД= углу ДВС. Равенства треугольников АВД и ВДС можно доказать по всем трем признакам равенства треугольников: 1)по двум сторонам и углу между ними: АВ=ВС из дано, сторона ВД общая и угол АВД равен углу ДВС 2)по стороне и двум прилежащим углам:сторона ДВ общая, углы АВД и ДВС равны, углы АДВ и ВДС равны и прямые, так как ВД - высота. 3) по трем сторонам: АВ=ВС из дано, сторона ВД одщая, и АД равно ДС, так как ВД это и медиана тоже.
МК1=ML1=КМ/2=12/√5 см.
Треугольники КМК1 и LML1 равны по катетам и прямому углу, значит КК1=LL1 ⇒ OK1=OL1.
В прямоугольном тр-ке КМК1 КК1²=КМ²+МК1²=(24²+12²)/5=720/5=144,
КК1=12 см.
Медианы треугольника точкой пересечения делятся в отношении 2:1 считая от вершины угла, значит ОК1=ОL1=KK1/3=12/3=4 см - это ответ.