Из вершины прямого угла прямоугольного треугольника до гипотенузы проведены высота и медиана,расстояние между основаниями которых равно 7 см, вычислить периметр треугольника и длину проведённой высоты если его гипотинуза имеет длину 50 см , !
Допустим дан прям.треугольник АБС, высота и медиана делят гипотенузу БС пополам, точка К центр БС, а точка М центр АС, соединим эти центры и по условию нам известно что расстояние между основание равно 7см. у нас внутри прямоуг. треугольника получился равнобедренный треугольник .АМ=7см, КМ=7см. так как точка М центр АС то можно найти длину этого отрезка умножив АМ на 2. АС=14см. нам осталось найти сторону АБ.Из теоремы Пифагора: под корнем(50 в квадрате - 14 в квадрате)=2304=48 Сторона АБ=48см Зная все стороны прям. треуг. можно найти периметр 48+50+14=112 см
Пусть АС=4х, ВD=6x, тогда отношение AC:BD=4x:6x=2:3
Диагонали ромба взаимно перпендикулярны, в точке пересечения делятся пополам и разбивают ромб на 4 равных прямоугольных треугольника. По теореме Пифагора сторона ромба а²=(d₁/2)²+(d₂/2)²=(2x)²+(3x)²=13x² а=х√13
Из формул для вычисления площади треугольника АОВ S(Δ AOB)=AO·OB/2 и S(Δ AOB)=AB·OE/2
находим OE AO·OB=AB·OE OE=2x·3x/х√13=6х/√13.
Из треугольника АОЕ по теореме Пифагора AE²=AO²-EO²=(2x)²-(6x/√13)²=4x²-(36x²/13)=(52x²-36x²)/13=16x²/13 AE=4x/√13
S(Δ AOE)=AE·OE/2
(4x/√13)·(6x/√13)=54 24x²=54·13 x²=9·13/4
S(ромба)=a·h=(x√13)·2OE=(x√13)·2·(6x/√13)=12x²=12·(9·13/4)=27·13= =351 кв. ед
Есть аксиома такая, если прямая параллельна одной из двух параллельных прямых, тогда она параллельна и второй.
Теперь, если прямые не пересекаются, то они параллельны. Но нам известно, что прямая пересекает одну из двух параллельных прямых, соответственно, она не может быть параллельной (не пересекаться) со второй. Это следствие вытекает из аксиомы. Если бы она не пересекала вторую, значит и к первой была бы параллельна.
Примечание. Все вышесказанное справедливо для прямых относящихся (принадлежащих) одной плоскости.
нам осталось найти сторону АБ.Из теоремы Пифагора: под корнем(50 в квадрате - 14 в квадрате)=2304=48
Сторона АБ=48см
Зная все стороны прям. треуг. можно найти периметр
48+50+14=112 см