Через вершину конуса з основою радіуса r проведено площину, що перетинає його основу по хорді, яку видно із центра основи під кутом α, а з вершини — під кутом β. знайдіть площу перерізу.
Через вершину конуса с основанием радиуса R проведена плоскость, которая пересекает его основание по хорде, которую видно из центра основания под углом α, а из вершины – под углом β. Найти площадь сечения.
--------
Данное сечение конуса - равнобедренный треугольник. Пусть сторона этого треугольника равна а.
Тогда его площадь можно выразить S=a²•sinβ/2.
1) Примем длину хорды равной х. Тогда из треугольника в основании, образованного хордой и двумя радиусами, квадрат её длины можно выразить по т.косинусов.
х²=2R²-2R²•cosα=2R²(1-cosα)
2) Выразим квадрат длины хорды по т.косинусов из треугольника в сечении:
Точка, равноудаленная от всех вершин квадрата - это вершина правильной пирамиды с основанием -квадратом со стороной, равной 8см и высотой, равной 4см. Надо найти расстояние от точки, равноудаленной от вершин основания (вершины пирамиды) до вершин основания, то есть РЕБРО данной пирамиды. Ребро найдем по Пифагору из прямоугольного треугольника, образованного половиной диагонали квадрата=4√2см, высотой пирамиды=4см (катеты) и ребром пирамиды (гипотенуза). Х=√(32+16)=√48=4√3см. ответ: искомое расстояние равно 4√3 см.
Точка, равноудаленная от всех вершин квадрата - это вершина правильной пирамиды с основанием -квадратом со стороной, равной 8см и высотой, равной 4см. Надо найти расстояние от точки, равноудаленной от вершин основания (вершины пирамиды) до вершин основания, то есть РЕБРО данной пирамиды. Ребро найдем по Пифагору из прямоугольного треугольника, образованного половиной диагонали квадрата=4√2см, высотой пирамиды=4см (катеты) и ребром пирамиды (гипотенуза). Х=√(32+16)=√48=4√3см. ответ: искомое расстояние равно 4√3 см.
Через вершину конуса с основанием радиуса R проведена плоскость, которая пересекает его основание по хорде, которую видно из центра основания под углом α, а из вершины – под углом β. Найти площадь сечения.
--------
Данное сечение конуса - равнобедренный треугольник. Пусть сторона этого треугольника равна а.
Тогда его площадь можно выразить S=a²•sinβ/2.
1) Примем длину хорды равной х. Тогда из треугольника в основании, образованного хордой и двумя радиусами, квадрат её длины можно выразить по т.косинусов.
х²=2R²-2R²•cosα=2R²(1-cosα)
2) Выразим квадрат длины хорды по т.косинусов из треугольника в сечении:
х²=2а²-2а²•cosβ=2а²(1-cosβ)
3) Приравняем найденные значения х²
2R²(1-cosα)=2а²(1•cosβ)
Выразим а² из этого уравнения:
а²=R²(1-cosα):(1-cosβ)
Отсюда
S сечения=[R²(1-cosα):(1-cosβ)]•sinβ:2