6
если < 1 = < 2, то a || b (по свойств паралельности прямых
если < 2 + < 3 = 180°, то c || b (по тому - же свойству)
т. к. a || b и c || b, то a || c (по аксиоме паралельных прямых)
7
m || n || k (ничего доказывать не надо)
8 сам не знаю
9
т. к. a || b, то < 1 + < 2 = 180°
мы знаем, что < 1 больше < 2 в 2 раза. получаем уравнение, где 2x = < 1, x = < 2
2x + x = 180
3x = 180
x =60
< 2 = 60°, < 1 = 60° × 2 = 120°
остальные углы можно найти по свойству равенства углов и смежных углов
1) Как называется утверждение которое нельзя доказать?
Аксиома.
2) Из теоремы "Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны" составьте обратную.
Меняем "если" и "то" местами: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
3) Как называются прямые на плоскости, не имеющие общих точек?
Параллельными.
4) Если прямая a параллельна прямой b, и прямая а параллельна прямой с, то что можно сказать о прямых b и c?
Тогда b║c.
5) Изобразите: две параллельные прямые пересеченные секущей, отметьте числами 5 и 6 углы, которые являются односторонними.
См. рисунок.
6) О равенстве каких углов можно утверждать, если параллельные прямые пересечены секущей.
Тогда равны накрест лежащие углы: ∠1 = ∠7, ∠4 = ∠6
и равны соответственные углы: ∠1 = ∠5, ∠2 = ∠6, ∠3 = ∠7, ∠4 = ∠8.
Тогда CH= 0.86/2=0.43