Треугольники AOD и BOC подобны по свойству трапеции. Площади подобных треугольников относятся, как квадраты коэффициента их подобия 25:16=k² k=√(25:16)=5:4 Следовательно, основания трапеции относятся, как 5:4 Обозначим высоту ᐃ ВОС=h₁ высоту ᐃ АОD=h₂ S АОD=h₂·АD:2 S ВОС=h₁·ВС:2
Площадь трапеции равна произведению ее высоты на полусумму оснований:
Высота трапеции Н S ABCD=Н·(АD+ВС):2 Н=h₂+h₁ S ABCD =(h₁+h₂)·(АD+ВС):2= =h₁·АD+h₂·АD+h1·ВС+h₂·ВС
1) Применим свойство пропорции: произведение средних членов пропорции равно произведению крайних. h₂:h₁=5:4 4h₂=5h₁ h₂=5h₁/4 S AOD=h₂·АD:2=5h₁/4·АD:2 25=5h₁/4·АD:2 Умножим на два обе части уравнения 12,5=5h₁/4·АD 5h₁/4 =12,5:AD h₁:4=2,5:AD h₁·AD= 4·2,5 =10 см² Т.к. площади боковых треугольников у трапеции равны равны, то h₂·ВС=10 см² Проверим это: 2) h₂:h₁=5:4 5h₁=4h₂ h₁=4h₂/5 S ВОС=h₁·ВС:2=4h₂/5·ВС:2 16=4h₂/5·ВС:2 Умножим на два обе части уравнения 8=4h₂/5·ВС 4h₂:5=8:ВС 4h₂·ВС=8·5=40 h₂·ВС=40:4=10 см²
3) Подставим значения h₂·ВС и h₁·AD в уравнение площади трапеции
S ABCD=h₁·АD+25+16+h₂ВС=41+=h₁·АD+h₂·ВС = S ABCD=10+25+16+10= 61 см
Теорема про три перпендикуляри. Якщо пряма, проведена на площині через основу похилої, перпендикулярна до її проекції, то вона перпендикулярна і до похилої. І навпаки, якщо пряма на площині перпендикулярна до похилої, то вона перпендикулярна і до проекції похилої.На малюнку 415 АН - перпендикуляр до площини α; АМ - похила. Через основу похилої - точку М проведено пряму а. Теорема про три перпендикуляри стверджує, що якщо а НМ, то а АМ, і навпаки, якщо а АМ, то а НМ.
Приклад 1. З вершини квадрата АВСD проведено перпендикуляр АК до площини квадрата. Знайти площу квадрата, якщо КD = 5 см; КС = 13 см.Розв’язання (мал. 416). 1) АК АВС; КD - похила; АDБ - її проекція. Оскільки АD DС, то за теоремою про три перпендикуляри маємо КD DС.3) Тоді площа квадрата S = 82 = 64 (см2).
Приклад 2. Сторони трикутника довжиною 4 см, 13 см і 15 см. Через вершину найбільшого кута до площини трикутника проведено перпендикуляр і з його кінця, що не належить трикутнику, проведено перпендикуляр завдовжки 4 см до протилежної сторони цього кута. Знайти довжину перпендикуляра, проведеного до площини трикутника.Розв’язання. 1) У ∆АВС: АВ = 4 см; ВС = 13 см; АС = 15 см. Оскільки АС - найбільша сторона трикутника, то АВС - найбільший кут трикутника. ВК АВС (мал. 417).2) КМ АС, тоді за теоремою про три перпендикуляри: ВМ АС, тобто ВМ - висота ∆АВС. За умовою: КМ = 4см.3) Знайдемо площу трикутника АВС за формулою Герона.4) 3 іншого боку
Найдем точку пересечения диагоналей прямоугольника. Координаты середины вектора АС (диагональ) равны: О(3,5;0,5). Координаты вектора равны разности соответствующих координат точек его конца и начала. Тогда вектор АО{3,5;0,5}, а вектор ВО{2,5;-2,5}. Это половины диагоналей и угол между ними находим по формуле: cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)]. В нашем случае: cosα=(3,5*2,5+0,5*2,5)/[√(3,5²+0,5²)*√(2,5²+(-2,5)²)]. cosα=(8,75+1,25)/[√(12,25+0,25)*√(6,25+6,25)]. Или cosα=10/12,5=0,8. Значит угол α≈36°
Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю. Скалярное произведение находим по формуле: (a,b)=x1*x2+y1*y2. Вектор АВ{1;3} Вектор ВС{6;-2} (ABxBC)=6+(-6)=0. Значит стороны АВ и ВС перпендикулярны. Следовательно, АВСD - прямоугольник.
Площади подобных треугольников относятся, как квадраты коэффициента их подобия
25:16=k²
k=√(25:16)=5:4
Следовательно, основания трапеции относятся, как 5:4
Обозначим
высоту ᐃ ВОС=h₁
высоту ᐃ АОD=h₂
S АОD=h₂·АD:2
S ВОС=h₁·ВС:2
Площадь трапеции равна произведению ее высоты на полусумму оснований:
Высота трапеции Н
S ABCD=Н·(АD+ВС):2
Н=h₂+h₁
S ABCD =(h₁+h₂)·(АD+ВС):2=
=h₁·АD+h₂·АD+h1·ВС+h₂·ВС
1)
Применим свойство пропорции: произведение средних членов пропорции равно произведению крайних.
h₂:h₁=5:4
4h₂=5h₁
h₂=5h₁/4
S AOD=h₂·АD:2=5h₁/4·АD:2
25=5h₁/4·АD:2 Умножим на два обе части уравнения
12,5=5h₁/4·АD
5h₁/4 =12,5:AD
h₁:4=2,5:AD
h₁·AD= 4·2,5 =10 см²
Т.к. площади боковых треугольников у трапеции равны равны, то h₂·ВС=10 см²
Проверим это:
2)
h₂:h₁=5:4
5h₁=4h₂
h₁=4h₂/5
S ВОС=h₁·ВС:2=4h₂/5·ВС:2
16=4h₂/5·ВС:2 Умножим на два обе части уравнения
8=4h₂/5·ВС
4h₂:5=8:ВС
4h₂·ВС=8·5=40
h₂·ВС=40:4=10 см²
3) Подставим значения h₂·ВС и h₁·AD в уравнение площади трапеции
S ABCD=h₁·АD+25+16+h₂ВС=41+=h₁·АD+h₂·ВС =
S ABCD=10+25+16+10= 61 см