1) если в четырехугольник можно вписать окружность, то сумма его противолежащих углов = 180 град. ∠Р и ∠Н являются противолежащими. получим, что ∠Н= 180- ∠Р= 180-120=60град.
2) проведем высоту КА. рассмотрим ΔКАН:
а) треуг прямоуг, тк ∠А= 90 град( высота)
б) по тригонометрическим формулам в прямоуг. треуг. катет= гипотенуза* cos прилежащего угла. АН= 6*cos 60= 6*1\2=3см
в) по тригонометрическим формулам КА= 6*sin противолежащего угла= 6*sin 60=6*√3\2= 3√3см
3) рассмотрим ΔМКА
а) треуг прямоуг (высота)
б) по теореме катет, лежащий против угла в 30 град, равен половине гипотенузы. получим, что МК= 3√3*2=6√3см
4) залезем в ΔМКН .мы можем сказать, что этот треуг вписан в окружность. если мы применим теорему синусов в этом треуг, по найдем радиус. итак, теорема синусов: 2R=а\sinА, где а- сторона треуг, а ∠а- противолежащий угол для этой стороны. 2R=МК\sin 60=6√3: √3\2=6√3*2\√3=12. 2R=12. тогда R= 12\2=6см
ответ:6
Пусть дан равнобедренный треугольник АВС. По условию задачи, один из внешних углов равен 32 градуса. Тогда Внутренний угол С как смежный угол равен 180-32=148(градусов). Так как в равнобедренном треугольнике углы при основании равны, а сумма внутренни углов равна 180 градусов, то углы А и В равны (180-148)/2=16(градусов).
Рассмотрим треугольник ACD. Так как угол С - тупой, то высота, проведённая из вершины при основании (допустим АD),лежит вне треугольника. В полученном треугольнике АСD угол D прямой, угол ACD=32 градуса. Тогда угол СAD равен 180-(90+32)=58 градусов.Значит искомый угол ACD равен 58+16=74 градуса.
Теорема Птолемея. Если четырехугольник ABCD вписан в окружность, то произведение диагоналей равно сумме произведений противоположных сторон
AC·BD=AB·CD+AD·BC.
Меня всегда удивлял тот факт, что в этой теореме приходится перемножать противоположные стороны. Как-то далеко друг от друга они расположены. Вот если бы соседние перемножались, то никакого предубеждения у меня не возникало бы. Это и дало толчок к моему доказательству.
Найдем площадь ABCD двумя
Во-первых, эта площадь равна половине произведения диагоналей на синус угла между ними - эта формула, как мне кажется, школьникам должна быть известна.
Доказывается она либо разбиением четырехугольника диагоналями на 4 треугольника, либо более красиво - рассматривая его как половину (по площади) параллелограмма, чьи стороны параллельны диагоналям четырехугольника и проходят через его вершины,
Если обозначить угол между диагоналями буквой Ф, то
S=(1/2)AC·BD·sin Ф
Угол Ф - это угол между хордами AC и BD, а он, как известно из школьной программы, равен полусумме дуг AB и CD, высекаемых этими хордами. Через вписанные углы он выражается в виде суммы углов BCA и CBD. Запомним это.
Во-вторых, более или менее естественно попробовать сосчитать площадь ABCD как сумму площадей двух треугольников, скажем ABC и ADC, но в этом случае мы будем получать произведения соседних сторон, а не противоположных. Выйдем из положения не совсем обычным Отрежем от четырехугольника треугольник ABC (останется нетронутым треугольник ADC) , перевернем ABC другой стороной и "приклеим" на старое место. Если Вы не любите "играть в бирюльки" и хотите "математическое рассуждение", то вот оно. Рассмотрите диаметр окружности, перпендикулярный AC, и рассмотрите точку B', симметричную точке B относительно этого диаметра. Конечно, она снова лежит на окружности, при этом AB=CB'; BC=B'A. Иными словами, мы получили четырехугольник AB'CD, площадь которого равна площади старого, с теми же сторонами, но теперь те стороны, которые были противоположными, стали соседними. Разобьем четырехугольник AB'CD на два треугольника так, чтобы их сторонами были бывшие противоположные. Тогда
S_(ABCD)=S_(AB'CD)=S_(AB'D)+S_(B'CD)=
(1/2)AB'·ADsin DAB'+(1/2)B'C·CDsin B'CD
Во вписанном четырехугольнике, как известно, сумма противоположных углов равна 180°, значит синусы этих углов равны, поэтому
S_(ABCD)=(1/2)(AB'·AD+B'C·CD)sin DAB'=
(1/2)(BC·AD+AB·CD)sin (DAC+CAB')=
(1/2)(BC·AD+AB·CD)sin (DBC+BCA)=
(1/2)(BC·AD+AB·CD)sin Ф
(углы DAC и DBC опираются на одну дугу и поэтому равны,
углы CAB' и BCA опираются на равные хорды B'C и AB и поэтому равны).
Сравнив две полученные формулы для площади ABCD, получаем искомую формулу.
Пример на использование теоремы Птолемея.
Четырехугольник ABCD вписан в окружность, AB=1, AC=2, AD=6/5, ∠ADC=90°. Найти BD.
Решение. ∠ADC=90°⇒∠ABC=90°, то есть ABCD разбит диагональю AC на два прямоугольных треугольника. С теоремы Пифагора находим неизвестные катеты этих треугольников: BC=√3; CD=8/5.
По теореме Птолемея BD·AC=AB·CD+BC·AD;
2BD=8/5+6√3/5; BD=(4+3√3)/5
Заканчивая сей опус, хочу извиниться за то, что не сейчас сделать чертеж - очень много дел запланировано на этот вечер. Если кто-нибудь сделает мне его - отдам все заработанные на этой задаче .)))