1) Через точку S проходит линия пересечения противоположных граней.
Из этой точки проводим прямую SN, параллельную ВС.
Через ВМ проводим прямую до пересечения с SN.
2) У заданной пирамиды апофемы пересекаются под прямым углом.
Поэтому искомое расстояние - и есть длина апофемы.
Проекция апофемы на основание равна:
КО = 2√6*(√3/2) = 3√2 (то есть равна высоте пирамиды, отсюда был сделан вывод о перпендикулярности апофем.
Искомое расстояние как длина апофемы равно:
d = A = √((3√2)² + (3√2)²) = √(18 + 18) = 6.
Две хорды окружности АС и BD взаимно перпендикулярны.
а) Найдите отрезок. соединяющий середины хорд АС и BD, если отрезок. соединяющий точку их пересечения с центром окружности равен 3.
б) При условии пункта а) найдите AD, если AD>BC, AC=BD и отрезок, соединяющий середины хорд АВ и CD, равен 5.
————————
а) Обозначим середины хорд АС и ВD точками К и М соответственно. . Угол Т в точке пересечения хорд - прямой (дано).
Радиус, проведенный к середине хорды, перпендикулярен ей ⇒ Углы ОКТ-ТМТ - прямые. ⇒ Четырехугольник ОКТМ - прямоугольник. Расстояние ОТ является его диагональю. Диагонали прямоугольника равны. ⇒ Длина отрезка между центрами хорд равна КМ=ОТ=3.
---------------
б) Хорды АС и ВD равны и взаимно перпендикулярны (дано), они , стягивают равные дуги и при пересечении образуют равнобедренные прямоугольные треугольники. Поэтому хорды АВ и СD, которые соединяют концы АС и ВD, равны.
Четырехугольник АВСD - равнобедренная трапеция, и PQ - её средняя линия.
Из решения пункта а) данной задачи отрезок КМ=3. Он проходит через середины АС и ВD и принадлежит средней линии PQ. Для треугольников АВС и DBC с общим основанием ВС отрезки РК и МQ - средние линии, поэтому равны. РК=MQ=(PQ-KМ):2=(5-3):2=1. АD - основание треугольника АВD, РМ - его средняя линия. По свойству средней линии треугольника АD=2РМ=2•(PK+KM)=2•(1+3)=8 (ед. длины)