М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
VovanGh165
VovanGh165
07.09.2022 20:09 •  Геометрия

1) в трeугольнике abc известно, что ac=52, bm медиана, bm=36.найдите am 2)центр окружности, описанной около треугольника abc, лкжит на стороне ab. радиус окружности равен 8,5. найдите bc если ас= 8

👇
Ответ:
volkovaolesya2
volkovaolesya2
07.09.2022
Вроде правильно. а определения и свойства можно найти в учебнике
1) в трeугольнике abc известно, что ac=52, bm медиана, bm=36.найдите am 2)центр окружности, описанно
4,4(93 оценок)
Открыть все ответы
Ответ:
DanilZ2
DanilZ2
07.09.2022

а) Площадь сектора 6π см² ,  дуга сектора 2π см

Формула площади сектора через длину дуги 

S=L•R/2

6π=2πR/2⇒

R=6

б) 

Длина дуги сектора равна длине дуги в 1°, умноженной на величину угла сектора.

L=(2πR:360°)•n , где n - угол сектора

 2π=2πR:360•n ⇒

n=2π •360:12π=60°

в) 

Рассмотрим чертеж приложения, в котором угол сектора АОВ=60°, С -точка касания  окружностей, О1 - центр вписанной в сектор АОВ окружности. Он лежит на ОС, биссектрисе угла АОВ. 

 АО=ОВ=ОС=6

Проведем из О1 радиус в точку касания М вписанной окружности с ОВ. 

Треугольник ОО1М прямоугольный, ∠О1ОМ=30°, ОО1 - гипотенуза, О1М - катет= r

ОО1=ОС - О1С=6-r

r противолежит углу 30°⇒

r=(6-r):2 ⇒

3r=6 см

r=2 см


Площадь кругового сектора равна 6π см², а длина дуги 2π см. найдите длину окружности, вписанной в эт
4,5(60 оценок)
Ответ:
leesasha083
leesasha083
07.09.2022
Проще всего представить треугольник АВС равнобедренным с основанием в 10 см и высотой в 5 см.
Боковые стороны равны по 5√2 см.
Тогда его площадь соответствует заданию:
S = (1/2)*10*5 = 25 см².
Углы при основании равны 45 градусов, при вершине - 90 градусов.
По заданию АР = (4/5)*5√2 = 4√2 см.
                    PB = (1/5)*5√2 = √2 см.
                    BQ = AP = 4√2 см,
                    QC = PB = √2 см.
                    RC = (4/5)*10 = 8 см,
                    AR = 10 - 8 = 2 см.   
Теперь можно определить длины сторон искомого треугольника PQR.
PQ = √(√2)²+(4√2)²) = √(2+32) = √34  ≈  5,83095189 см.
PR = √(2²+(4√2)²-2*2*4√2*cos45°) = √20 = 2√5 ≈  4,472136 см.
RQ = √((√2)²+8²-2*√2*8*cos45°) = √50  ≈  7,0710678 см.
Теперь по формуле Герона находим площадь треугольника PQR.
S = √(p(p-a)(p-b)(p-c)). где р - полупериметр, р =  8,6870778 см.
Подставив данные, получаем S = 13 см².
4,5(65 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ