Стороны основания прямого параллелепипеда равны 1 дм и 2√2 дм, а угол между ними 45°. найдите объем параллелепипеда, если площадь его меньшего диагонального сечения равна √15 дм². варианты ответа: а) 3√2 дм³ б) 2√3 дм³ в) 3√5 дм³ г) 4 дм³
Смотри, объём параллелепипеда равен произведению площади основания на высоту. Площадь основания мы найдём по формуле: S=a*b*sin(a),где а - угол между сторонами. Отсюда S=2. Теперь, площадь меньшего диагонального сечения - это площадь прямоугольника, проведенного через меньшую диагональ основания и высоту. Диагональ найдём по теореме косинусов: x=sqrt(a^2+b^2-2abcos(a)); х=sqrt(5); Делим 15 на х и результат умножаем на полученную площадь. Выходит 6 корней из пяти.
1)Пусть С- прямой угол в прямоугольном треугольнике АВС, тогда СН-высота проведенная к гипотенузе, СМ- биссектриса,проведенная к гипотенузе. 2)По условию сказано, что угол между СМ и СН равен 15 градусов. 3)По свойству биссектрисы угол АСМ= углу МСВ=45 градусов(т.к С по условию 90),значит, так как угол НСМ=15 градусов, а угол НСМ+угол АСН=45 градусов, то угол АСН равен 30 градусам. 4)Так как СН высота, то угол СНА равен 90 градусов, следовательно угол САН=60 градусов( по теореме о сумме углов треугольника). 5)Значит, в треугольнике АВС угол В = 180-90-60=30 градусов( по теореме о сумме углов треугольника) 6) Так как в прямоугольном треугольнике против угла в 30 градусов лежит катет равный половине гипотенузы, то АС=3 см 7) По теореме Пифагора СВ= 3 корня из 3 ответ: 3 и 3корня из 3
№1 КМ и КН отрезок касательных проведенных из точки К к окружности с центром О.Найти КМ иКН если ОК=12 и угол МОН=120 градусам. №2 Диагональ ромба ABCD пересекаются в точке О.Доказать что прямая ВD касается окружности с центром А и радиусом ОС
1. Отрезки касательных, проведенных из одной точки, равны, т. е. КМ=КН КО - биссектриса угла МОН, след-но тр-ники КОМ и КОН - прямоугольные, с углами= 90, 60, 30 град. ОМ=ОН=6см. , КМ=КН=sqrt(144-36)=7sqrt2 2. Диагонали ромба точкой пересечения делятся пополам, т. е. АО=ОС, отсюда диагональ ромба ВD касается окружности с центром А и радиусом ОС
Теперь, площадь меньшего диагонального сечения - это площадь прямоугольника, проведенного через меньшую диагональ основания и высоту. Диагональ найдём по теореме косинусов:
x=sqrt(a^2+b^2-2abcos(a)); х=sqrt(5);
Делим 15 на х и результат умножаем на полученную площадь.
Выходит 6 корней из пяти.