Образующая конуса наклонена к плоскости его основания под углом 60 градусов.площадь сечения,проведенного через две образующие,угол между которыми 30 градусов,равна 16 сантиметров в квадрате.найти площадь осевого сечения конуса,площадь конуса
Ну, в треуг. к бОльшей стороне проводится мЕньшая высота. Док-во очень простое, логическое. Площадь треуг.- величина постоянная? Да. Тогда если брать произведение бОльшей стороны на какую-то высоту (1) и мЕньшую сторону на какую-то высоту (2), то понятно, что (1) должна быть меньше (2) Соответственно 10 - 9 15 - 6 18 - 5 Проверяя по площади, находим, что это так.
Но вот только неувязочка с задачей- высоты -то фейковые! Из решения получаем, что площадь треуг. будет, например , 10*9/2=45
А из сторон 15,18 и 10 по формуле Герона находим истинную площадь - приблизительно 75. Тем, кто составлял условие задачи - руки повыдергивать. Так учителю и скажи.
Сумма углов Δ ACD 180°, угол АСD = 90°( по условию), угол D = 60°, тогда угол САD = 180° - 90° - 60° = 30°. ΔACD - прямоугольный треугольник. По свойству прямоугольного треугольника сторона CD, которая лежит против угла 30° равна половине гипотенузы AD. AD = 2CD. Диагональ делит угол А пополам, значит угол А = 60°, трапеция АВСD - равнобокая, боковые стороны равны AC = CD. рассмотрим Δ АВС , угол САВ = 30°, угол ВСА = 30° ( как угол при параллельных прямых и секущей), Δ АВС - равнобедренный, т.е. АВ = ВС. P = AB + BC + CD + AD = 5X, X = 20 :5 = 4 cм, средняя линия трапеции равна полусумме оснований ВС = 4 см, АD = 2·4 = 8 см (4 + 8)/2 = 6 см ответ 6 см
Осевое сечение конуса - равносторонний треугольник.
МА=МВ=АВ=2r.
Cм. рис.2 в приложении.
Сечение
МВС - равнобедренный треугольник.
∠ ВМС= 30°
S( Δ ВМС)=МС·МВ·sin30°/2=(2r·2r·1/2)/2=r²
r²=16 ⇒ r=4 cм
S(осевого сечения)=2r·2r·sin 60°/2=r²√3=16√3 кв. см.
О т в е т. 16√3 кв. см