М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
anickava
anickava
30.10.2020 18:24 •  Геометрия

Решить : дано ac паралельна bd, угол 1+угол 3+угол 4+угол 5=220° .найти угол 2.

👇
Ответ:
Valeria20091
Valeria20091
30.10.2020
Сфотографируй дано! Или напиши по русски
4,4(2 оценок)
Открыть все ответы
Ответ:
fgggg2qq
fgggg2qq
30.10.2020
ABCD - трапеция; AD - нижнее основание; BC - верхнее основание; O - точка пересечения диагоналей. EF проходит через точку O и параллельно основаниям. MN проходит через точку O и перпендикулярно основаниям - высота трапеции. E∈AB; F∈CD; M∈BC; N∈AD
Тр-к BOC подобен тр-ку AOD. Отношение площадей подобных треугольников равно квадрату отношения соответственных линейных размеров, т.е. сторон и высот. Значит, AD:BC=3^:1; MO:ON=1:3; MO:MN=1:4;
Пусть BC=x⇒AD=3x; MO=y;⇒ON=3y; MN=4y
Площадь трапеции ABCD равна: S=1/2(AD+BC)*MO=1/2(x+3x)*4y=8xy
Выразим через S площади BEFC  и AEFD.
Площадь AEFD равна сумме площадей AOFD  и AEO.
Рассмотрим тр-ки ACD и OCF. Они подобны. Их высоты относятся как 4:1, а площади как 16:1. Площадь ACD равна 1/2*3x*4y=6xy. Площадь OCF равна 1/16*6xy=3/8*xy. Площадь AOFD  равна разности площадей ACD и OCF:
6xy-3/8*xy=45/8*xy
Рассмотрим тр-ки ABC и AEO. Они подобны. Их высоты относятся как 4:3, а площади как 16:9. Площадь ABC равна 1/2*x*4y=2xy. Площадь AEO равна 9/16*2xy=9/8*xy. Площадь AEFD  равна: 45/8*xy+9/8*xy=54/8*xy=27/4*xy
Площадь BEFC равна разности площадей ABCD и  AEFD:
8xy-27/4*xy=5/4*xy
S(BEFC): S(AEFD)=5/4*xy:27/4*xy=5:27
4,5(55 оценок)
Ответ:
rodinaolga
rodinaolga
30.10.2020

Построим ромб по стороне a и радиусу вписанной окружности r.

1) AB=a

2) проведем прямую n, параллельную AB, на расстоянии r

Для этого

- построим перпендикуляр к AB

- отложим на нем отрезок MN=r

- через точку N проведем прямую n, перпендикулярную MN

3) построим окружность на отрезке AB как на диаметре

4) пересечение окружности и прямой n = точка O

Угол AOB - прямой, так как опирается на диаметр AB.

Диагонали ромба пересекаются под прямым углом.

Диагонали ромба являются биссектрисами, точка их пересечения - центр вписанной окружности - удалена от стороны AB на радиус.

Таким образом, точка O - центр пересечения диагоналей ромба.

5) построим вершины С и D ромба, симметричные A и B относительно точки O.

Для этого

- проведем прямую BO

- отложим отрезок DO=OB итд


Побудувати ромб за стороною а та радіусом и вписаного в нього кола. Будь ласка повний розв'язок. 8 к
4,6(80 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ