М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Abcda1b1c1d1 прямоугольный параллелепипед b1c 20 b1a 13 ad-ab 11 найти aa1

👇
Ответ:
Selima2005
Selima2005
25.11.2021

Условие:

ABCDA₁B₁C₁D₁ - прямоугольный параллелепипед, B₁C = 20, B₁A = 13, AD - AB = 11. Найти AA₁.

Каждое ребро прямоугольного параллелепипеда перпендикулярно его двум параллельным граням

⇒  B₁B ⊥ AB, B₁B ⊥ BC

Каждая грань прямоугольного параллелепипеда является прямоугольником

⇒  AD = BC,  A₁A = B₁B

AD - AB = 11    ⇒    BC - AB = 11   ⇒   BC = AB + 11

Пусть АВ = х, тогда ВС = х + 11

Рассмотрим прямоугольный ΔАВВ₁: По теореме Пифагора

АВ₁² = АВ² + В₁В²   ⇒    В₁В² = АВ₁² - АВ²

Рассмотрим прямоугольный ΔСВВ₁: По теореме Пифагора

В₁С² = ВС² + В₁В²   ⇒    В₁В² = В₁С² - ВС²

Значит, АВ₁² - АВ² = В₁С² - ВС²

13² - х² = 20² - (х + 11)²

169 - х² = 400 - х² - 22х - 121

22х = 110

х = 5    ⇒   АВ = 5  и  ВС = 5 + 11 = 16

Рассмотрим прямоугольный ΔАВВ₁: По теореме Пифагора

В₁В² = АВ₁² - АВ² = 13² - 5² = 169 - 25 = 144

АА₁ = В₁В = 12

ответ: 12


Abcda1b1c1d1 прямоугольный параллелепипед b1c 20 b1a 13 ad-ab 11 найти aa1
4,7(64 оценок)
Открыть все ответы
Ответ:
artkeyn1
artkeyn1
25.11.2021
1.
ΔMDN подобен ΔADB по двум пропорциональным сторонам и углу между ними (DM:MA = DN:NB = 2:1, ∠D - общий)
⇒ MN:AB = 2:3, ∠DMN = DAB. Эти углы соответственные при пересечении прямых MN и АВ секущей DA, ⇒ MN║AB.

ΔNDP подобен ΔBDC по двум пропорциональным сторонам и углу между ними (DN:NB = DP:PC = 2:1, ∠D - общий)
⇒ NP:BC = 2:3, ∠DNP = ∠DBC. Эти углы соответственные при пересечении прямых РN и СВ секущей DВ, ⇒ РN║СB.

ΔDMP подобен ΔDAC по двум пропорциональным сторонам и углу между ними (DM:MA = DP:PC = 2:1, ∠D - общий)
⇒ MP:AC = 2:3.

MN║AB и РN║СB ⇒ плоскость MNP параллельна плоскости АВС.

MN:AB = NP:BC = MP:AC = 2:3 ⇒ ΔMNP подобен ΔАВС по трем пропорциональным сторонам.
Smnp:Sabc = 4:9
Smnp = 4Sabc/9 = 40/9 см² = 4 целых и 4/9 см²

2.
ABCDA₁B₁C₁D₁ - параллелепипед.
Точки M и N принадлежат плоскости (АВС) ⇒ проводим прямую MN.
MN - отрезок сечения.
MN∩AD = X,  MN∩DC = Y

Точки К и X принадлежат плоскости ADD₁. Проводим прямую KX.
KX∩AA₁ = L
KL  и LM - отрезки сечения.

Точки К и Y принадлежат плоскости CDD₁. Проводим прямую KY.
KY∩CC₁ = O.
КО и ON - отрезки сечения.

KONML - искомое сечение.

Нужно! 1) на ребрах da, db и dc тэтраэдра dabc отмечены точки m, n и p так, что dm: ma=dn: nb=dp: pc
4,4(38 оценок)
Ответ:
Nastya26061
Nastya26061
25.11.2021
1.
ΔMDN подобен ΔADB по двум пропорциональным сторонам и углу между ними (DM:MA = DN:NB = 2:1, ∠D - общий)
⇒ MN:AB = 2:3, ∠DMN = DAB. Эти углы соответственные при пересечении прямых MN и АВ секущей DA, ⇒ MN║AB.

ΔNDP подобен ΔBDC по двум пропорциональным сторонам и углу между ними (DN:NB = DP:PC = 2:1, ∠D - общий)
⇒ NP:BC = 2:3, ∠DNP = ∠DBC. Эти углы соответственные при пересечении прямых РN и СВ секущей DВ, ⇒ РN║СB.

ΔDMP подобен ΔDAC по двум пропорциональным сторонам и углу между ними (DM:MA = DP:PC = 2:1, ∠D - общий)
⇒ MP:AC = 2:3.

MN║AB и РN║СB ⇒ плоскость MNP параллельна плоскости АВС.

MN:AB = NP:BC = MP:AC = 2:3 ⇒ ΔMNP подобен ΔАВС по трем пропорциональным сторонам.
Smnp:Sabc = 4:9
Smnp = 4Sabc/9 = 40/9 см² = 4 целых и 4/9 см²

2.
ABCDA₁B₁C₁D₁ - параллелепипед.
Точки M и N принадлежат плоскости (АВС) ⇒ проводим прямую MN.
MN - отрезок сечения.
MN∩AD = X,  MN∩DC = Y

Точки К и X принадлежат плоскости ADD₁. Проводим прямую KX.
KX∩AA₁ = L
KL  и LM - отрезки сечения.

Точки К и Y принадлежат плоскости CDD₁. Проводим прямую KY.
KY∩CC₁ = O.
КО и ON - отрезки сечения.

KONML - искомое сечение.

Нужно! 1) на ребрах da, db и dc тэтраэдра dabc отмечены точки m, n и p так, что dm: ma=dn: nb=dp: pc
4,5(65 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ