За теоремой Пифагора находим гипотенузу АВ в квадрате=5 в квадрате + 5 корень с 3 в квадрате =25+25*3=100 ,тогда АВ=10см Теперь найдем угол В.за формулой косинус угла = отношению прилегаещего к нему катета к гипотенузе ,то есть косинусВ=5 корен с 3 поделить на 10= корень с 3 черта дроби и в знаменателе 2...из таблицы тригонометрических функций углов имеем ,что угол В=30 градусов...
Назад в каталог вернуться к списку прототипов этой категории версия для печати и копирования в ms word 1 24 № 340344 в треугольнике abc биссектриса угла a делит высоту, проведенную из вершины b в отношении 5: 3, считая от точки b. найдите радиус окружности, описанной около треугольника abc, если bc = 8. аналоги к № 339656: 339466339505 339795 350157 350726 351460351953 352273 353136 349121 все решение · прототип · поделиться · сообщить об ошибке · по
1). Есть теорема о неравенстве треугольника: "Каждая сторона треугольника меньше суммы двух других сторон". Следовательно, если возьмем большую сторону и сумма двух других сторон будет БОЛЬШЕ этой стороны, то такой треугольник существует и его можно построить. В нашем случае это треугольник а) со сторонами 4,3 и5. Чтобы построить треугольник с этими сторонами, проводим прямую "а" и откладываем на ней отрезок АВ, равный любой из сторон. Например, отрезок, равный 5 см. Из концов этого отрезка радиусами, равными 4 см и 3 см, проводим циркулем дуги до их пересечения с одной стороны от прямой "а". Обозначим точку пересечения этих дуг точкой С. Соединив точки А и С, В и С, получаем искомый треугольник со сторонами 3см,4см и 5см. 2). Этот алгоритм построения треугольника по его сторонам применим и в случае равнобедренного треугольника. Нам дана сторона основания и боковая сторона треугольника. Вспомним, что боковые стороны равнобедренного треугольника равны. И за дело: на прямой "а" откладываем отрезок АВ, равный данному основанию (замерив его циркулем). И из точек А и В раствором циркуля, равным боковой стороне, делаем засечки с одной стороны от прямой. Точка пересечения этих засечек и будет вершиной С равнобедренного треугольника АВС, в котором АС=ВС. 3). Алгоритм уже сформулирован в пунктах 1) и 2).