Если имелось в виду: "Высота конуса и диаметр шара равны", то решение такое: Радиус основания конуса равен половине длины образующей конуса, так как лежит напротив угла 30° (из треугольника сечения) Тогда 4Rк²-Rк²=h² и 3Rк²=h² То есть Rк=h*/√3. Площадь основания конуса So=π(Rк)² или So=πh²/3. Объем конуса равен Vк=(1/3)*So*h или Vк=(1/3)*(1/3)πh³= πh³/9. Rш=h/2 (дано). Vш=(4/3)πRш³ или Vш=(4/3)πh³/8. Vк/Vш=(πh³/9)/((4/3)πh³/8)=(πh³*3*8)/(9*4*πh³)=2/3. Это ответ.
Сумма углов в параллелограмме - 360 градусов, и углы попарно равны. Значит - два угла по 120 градусов, и 2 - по 60. Опустим из левого верхнего угла на основание высоту. Получаем треугольник, в котором известны углы в 60, 90 и 30 градусов, т.к. сумма углов в треугольнике - 180 градусов. К тому же, в этом прямоугольном треугольнике нам известна гипотенуза - 5 см. Высота параллелограмма h=5*sin60=5*√3/2 Теперь мы можем найти площадь фигуры, которая равна другой стороне (8 см), умноженная на высоту. S=a*h=8*5*√3/2= 20*√3 см2
Формула площади ромба через диагонали: S=(d1*d2)/2 d1 и d2 диагонали ⇒ S=336, d1=14 336=(14*d2)/2 решаем... 14*d1=336*2 14*d1==672 d1=672/14=48 - вторая диагональ
ромб АВСД О - точка пересечения диагоналей Пусть диагональ СА=14 тогда СО=14/2=7 (т.к. диагонали точкой пересечения делятся пополам) S(АВСД)=336 а диагонали ромба разбивают его на 4 равных треугольника ⇒ площадь одного треугольника =360/4=84см² рассмотрим ΔВОС -прямоугольный (т.к. диагонали ромба пересекаются под прямым углом) S(ВОС)=(ВО*ОС)/2 S(ВОС)=84 СО=7 подставляем 84=(7*ВО)/2 7*ВО=168 ВО=24 - это половина нашей диагонали ВД ⇒ ВД=24*2=48
то решение такое:
Радиус основания конуса равен половине длины образующей конуса,
так как лежит напротив угла 30° (из треугольника сечения)
Тогда 4Rк²-Rк²=h² и 3Rк²=h²
То есть Rк=h*/√3.
Площадь основания конуса So=π(Rк)² или So=πh²/3.
Объем конуса равен
Vк=(1/3)*So*h или Vк=(1/3)*(1/3)πh³= πh³/9.
Rш=h/2 (дано).
Vш=(4/3)πRш³ или Vш=(4/3)πh³/8.
Vк/Vш=(πh³/9)/((4/3)πh³/8)=(πh³*3*8)/(9*4*πh³)=2/3. Это ответ.