Высота правильной треугольной пирамиды равна 8 см, а двугранный угол между боковой гранью и плоскостью основания пирамиды равен 30°. вычисли объём пирамиды.
Высота пирамиды h = 8*sin(30) =8*1/2=4 радиус вписанной в основание окружности r = 8*cos(30) = 8 * 1/2 корень =4 высота основания h = 3*r = 12; боковая сторона a = h/sin(30) = 12*1/2=6; площадь основания s = a*h/2 =6*12/2=36 объем пирамиды v = (1/4)*s*h = 36*12*(1/4)=108
Так как по условию xm+yn=5n, тоxm =(5-y)n если x не равно 0, то разделив левую и правую части уравнения на x, получим m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b Следовательно, если a и b не коллинеарны то такого числа не существует. А в нашем примере такое число есть (при x не равном 0). Следовательно если x не равно 0, то векторы коллинеарны. А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0. ответ: x = 0 и y = 0
Треугольник АВС образова наклонными АВ и АС.По условию АВ=ВС и угол ьежду ними =60° ⇒ ΔАВС - равносторонний ⇒ ВС=АВ=АС=а.Из ΔВОС: ВО=ОС как равные проекции равных наклонных⇒ ΔВОС - равнобедренный с углом в 90° ( по условию). Обозначим ВО=ОС=х. Тогда по теореме Пифагора ВО²+ОС²=ВС²,2х²=а², х=(а*√2)/2.Из ΔАОВ: cos<ABO=ВО/АВ=√2/2.Значит угол АВО=45°. Это и естть угол ьежду наклонной и плоскостью, потому, что он является углом между наклонной и её проекцией на плоскость. А ΔАОС=ΔАОВ и <АСО=45°.