Объём шарового пояса равен разности объёмов двух шаровых сегментов. По теореме Пифагора, расстояния от центра шара до секущих плоскостей равны 4 и 3 соответственно. Отсюда следует, что высота одного сегмента равна h1=5−3=2h1=5−3=2, а высота другого равна h2=5−4=1h2=5−4=1. Формула для объёма шарового сегмента высоты hh такова: V=πh2(R−h3)V=πh2(R−h3), где RR радиус шара. Поэтому надо найти два объёма по этой формуле (для h=h1h=h1 и h=h2h=h2), а потом из большего вычесть меньший.
Пусть M — середина AB, а C′ — основание высоты, опущенной из точки C на сторону AB. Пусть E — середина отрезка CH, где H— ортоцентр треугольника ABС. Искомый угол равен удвоенному углу MEH, поскольку ∠MEН является вписанным углом, опирающимся на рассматриваемый в задаче отрезок. Пусть O— центр описанной окружности треугольника ABC. Поскольку CE=CH/2=OM, причем CE и OM параллельны, то четырехугольник OMECявляется параллелограммом. Отсюда следует, что ∠MEC′=∠OCН. Известно, что ∠OCH=|∠A−∠B|. Этот угол легко считается, если использовать тот факт, что ∠OCA=90∘−∠AOC/2=90∘−∠B=∠HCB, а также, что ∠C=180∘−∠A−∠В. Тогда искомый угол равен 80
Построить касательную к данному кругу: а) параллельную данной прямой. Из центра окружности опустить перпендикуляр на данную прямую. Он пересечёт окружность в точке касания. Через полученную точку провести прямую, перпендикулярную построенному перпендикуляру к данной прямой. Эта прямая будет параллельна данной прямой.
б) перпендикулярную к данной прямой. Из центра окружности опустить перпендикуляр на данную прямую. Из центра окружности восстановить перпендикуляр к построенному перпендикуляру. Он пересечёт окружность в точке касания. Через полученную точку провести прямую, перпендикулярную к данной прямой. Эта прямая и будет перпендикулярна данной прямой.
в) под данным острым углом к прямой. В любой точке данной прямой построить прямую под заданным к ней углом. Затем по пункту а) построить параллельную касательную прямую.
Объём шарового пояса равен разности объёмов двух шаровых сегментов. По теореме Пифагора, расстояния от центра шара до секущих плоскостей равны 4 и 3 соответственно. Отсюда следует, что высота одного сегмента равна h1=5−3=2h1=5−3=2, а высота другого равна h2=5−4=1h2=5−4=1. Формула для объёма шарового сегмента высоты hh такова: V=πh2(R−h3)V=πh2(R−h3), где RR радиус шара. Поэтому надо найти два объёма по этой формуле (для h=h1h=h1 и h=h2h=h2), а потом из большего вычесть меньший.