Понятие геометрии Геометрия - часть математики, отвечающая на вопросы, связанные с размером, формой и относительным положением фигур, а также описывающая свойства пространства.Исходно применялась к вычислениям длин, площадей, объемов.Наглядность геометрии делает ее более доступной, чем другие разделы математики, такие, как, например, алгебра и теория чисел. Однако, язык геометрии также используется для описания объектов, далеких от ее первоначального предназначения.В 3-м веке до н.э. сформулирована в виде аксиом Евклидом . Рене Декарт ввел в геометрию системы координат. Это позволило представлять геометрические фигуры в виде уравнений - т.е. аналитически.В 19-м веке геометрия стала рассматривать множества и пространства, превратившись таким образом из наглядной науки - евклидовой геометрии в абстрактную - неевклидову.
Научное применение, Геометрия является одним из разделов математики и служит инструментом вычислений в точных науках, таких как физика, астрономия, инженерия.Отсюда следует вывод, что с геометрии создают новые разработки и делают открытия.
Геометрия инженеровЛюбое изделие имеет геометрическую форму. Инженер, создавая его, применяет законы геометрии для исполнения задуманного им проекта. Ведь если бы профессионалы не знали геометрии, это отразилось бы на жизнедеятельности людей. Например, незнающий геометрии инженер слишком высоко удалил фонарь от земли, и поэтому людям, проходящим по улице не будет видна дорога и, это пагубно отразится на их здоровье.
Геометрия строителей Для исполнения разработанного архитектором плана строителям необходимо применять законы геометрии при расчетах надежности (устойчивости) зданий.
1)г
2)Трикутники АВВ1 і АСС1 подібні за трьома кутами ( два при паралельних прямих і третій А спільний) отже
АС/АВ=СС1/ВВ1=11/(9+11) звідси
ВВ1=20*СС1/11=20*8,1/11=162/11
3)Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость.
В нашем случае проекциями данного нам отрезка на плоскости - это отрезки, соединяющие концы данного отрезка на плоскости и перпендикуляра, опущенного на данную плоскость.Но плоскости перпендикулярны, значит эти перпендикуляры - это расстояния от концов отрезка до линии пересечения плоскостей. То есть проекцией отрезка АВ на плоскость α будет отрезок АВ1,а углом между отрезком АВ и плоскостью α будет угол ВАВ1. Соответственно проекцией отрезка АВ на плоскость β будет отрезок ВА1,а углом между отрезком АВ и плоскостью β будет угол АВА1.
Синус угла ВАВ1 равен отношению противолежащего катета ВВ1 к гипотенузе AB, то есть Sin(ВАВ1)=12/24=1/2. Значит угол между отрезком АВ и плоскостью α равен 30°.
Синус угла АВА1 равен отношению противолежащего катета АА1 к гипотенузе AB, то есть Sin(АВА1)=12√2/24=√2/2. Значит угол между отрезком АВ и плоскостью α равен 45°.
ответ: Углы, образованные отрезком с плоскостями равны 30° и 45°.
4)находим высоту, проведенную к стороне 14
она равна 12( можно найти через формулу Герона площадь, а затем поделить на половину стороны 14см)
ну а дальше расстояние равно гипотенузе с катетами 12 и 16 и равна 20см
5)1. Проведем перпендикуляры из точек С и Д на АВ. Обозначим их СК и ДКПо условию
угол СКД=45.
2. Из треуг. АВС СК - высота правильного треугольника
СК=АВ*sqrt {3}/2=6
3. В треуг. АВД ДК - высота, опущенная на основание равнобедренного треугольника. Как известно, она совпадает с медианой.
АК= АВ/2= 2sqrt {3}
Из прямоуг. трег. АКД по теореме Пифагора
ДК= sqrt ( АД^2-АК^2)= sqrt( 14-12)= sqrt2
4 В треугольнике СКД СК=6, СД=sqrt2 . Угол СКД= 45
По теореме косинусов
СД^2=36+2-2*6*sqrt2*сos 45=26
СД=корень из 26
Объяснение: