Дано:
∆АВС - прямоугольный.
ВЕ - биссектриса.
∠А = 30°
ВЕ = 6 см
Найти:
∠ВЕА; СЕ; АС
Решение.
Сумма углов прямоугольного треугольника равна 90°
=> ∠В = 90 - 30 = 60°
Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> ВС = 1/2АВ
∠ЕВА = ∠ЕВС = 60 ÷ 2 = 30° (т.к. ВЕ - биссектриса)
Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> СЕ = 1/2ВЕ = 6 ÷ 2 = 3 см.
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠ВЕС = 90 - 30 = 60°
СУММА СМЕЖНЫХ УГЛОВ РАВНА 180°
=> ∠ВЕА = 180 - 60 = 120°
∠В = ∠А = 30°
=> ∆АЕВ - равнобедренный.
=> ЕВ = ЕА = 6 см, по свойству равнобедренного треугольника.
СА = 3 + 6 = 9 см
ответ: 120°; 9 см; 3 см.
Дано :
∆АВС — равнобедренный, вписан в окружность.
АС — основание = радиус описанной окружности.
Найти :
∪АС = ?
∪АВ = ?
∪ВС = ?
Если хорда равна радиусу окружности, то она стягивает дугу в 60°.АС — хорда описанной окружности, поэтому ∪АС = 60° (по выше сказанному).
∠АВС — вписанный (по определению).
По свойству вписанных углов —
∠АВС = 0,5*∪АС
∠АВС = 0,5*60°
∠АВС = 30°.
Углы у основания равнобедренного треугольника равны.Поэтому, по теореме о сумме углов треугольника —
∠АСВ = ∠ВАС = 0,5*(180° - ∠АВС) = 0,5*(180° - 30°) = 0,5*150° = 75°.
Причём ∠АСВ и ∠ВАС — вписанные по определению.
Равные вписанные углы опираются на равные дуги.Тогда —
∪АВ = ∪ВС = 2*∠ВАС = 2*75° = 150°.
60°, 150°, 150°.
Периметр равен 36, значит нужно подобрать такие числа, которые в сумме дают 13, а их произведение равно 36, такими числами являются 9 и 4