М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
20AKE04
20AKE04
23.06.2021 16:44 •  Геометрия

Выполните преобразование осевой симетрии треугольника относительно его средней линии

👇
Ответ:
муслима18
муслима18
23.06.2021

В документе чертёж

4,4(92 оценок)
Открыть все ответы
Ответ:
Алишер00001
Алишер00001
23.06.2021
1) Рассмотрим треугольники АВН и СВН. Их площади равны, так как у них равные основания (ВН - медиана) и одна и та же высота. Значит S(ABH)=S(CBH) или S(АОB)+S(AOH)=S(СОB)+S(COH)
2) Рассмотрим треугольники АOН и СOН. Их площади также равны, потому что ОН по прежнему медиана, треугольники с равными основаниями и высотами. Значит S(AOH)=S(COH)
3) От первого равенства отнимем второе:
S(АОB)+S(AOH)-S(AOH)=S(СОB)+S(COH)-S(COH)
Значит, S(АОB)=S(СОB)
4) (Аналогично 1 пункту) Рассмотрим треугольники САМ и ВАМ. Их площади равны, так как у них равные основания (АМ - медиана) и одна и та же высота. Значит S(САМ)=S(ВАМ) или S(СОА)+S(СОМ)=S(BОА)+S(ВОМ)
5) (Аналогично 2 пункту) Рассмотрим треугольники СОМ и ВОМ. Их площади также равны, потому что ОМ по прежнему медиана, треугольники с равными основаниями и высотами. Значит S(СОМ)=S(ВОМ)
6) (Аналогично 3 пункту) От четвертого равенства отнимем пятое:
S(СОА)+S(СОМ)-S(СОМ)=S(BОА)+S(ВОМ)-S(ВОМ)
Значит, S(СОА)=S(BОА)
7) Но так как S(АОB)=S(СОB) и S(СОА)=S(BОА), то S(АОB)=S(ВОС)=S(СОA). Доказано.
(Не знаю может есть и покороче, но что придумалось...)

Дорогие друзья! доказать . в треугольнике авс проведены медианы ам,вн,сд. о-точка пересечения медиан
4,8(26 оценок)
Ответ:
lenaaaaaak1
lenaaaaaak1
23.06.2021
См чертеж. О - центр описанной окружности, ВМ - диаметр, перпендикулярный FG (из за равенства дуг FB и BG), N - середина FG.
Треугольники ВС1N и BAM подобны (прямоугольные с общим острым углом), поэтому BN/BC1 = BA/MB; или BN*MB = BC1*BA;
точно так же из подобия BNA1 и BCM BN*MB = BA1*BC; 
можно, конечно, теперь начать вычислять отрезки, а можно заметить, что получилось BC1/BC = BA1/BA = 2/5; (ясно, что ВС1 = 2); то есть треугольники АВС и А1ВС1 подобны с коэффициентом подобия 2/5; 
(Это довольно полезная штука, можно и запомнить - прямая, перпендикулярная радиусу описанной окружности, проведенному в вершину треугольника, отсекает от треугольника ему же подобный треугольник.)
Если обозначить площадь АВС как S, то площадь A1BC1 равна S*(2/5)^2;
а площадь четырехугольника AC1A1C равна S*(1 - (2/5)^2) = 21*S/25;
Остается найти площадь АВС по формуле Герона (например), она равна 6√6
(повторю из предыдущей задачи
p = (5 + 6 + 7)/2 = 9; p - 5 = 4; p - 6 = 3; p - 7 = 2; 
S^2 = 9*4*3*2; S = 6√6;)
ответ 126√6/25;
Около треугольника abc, стороны которого ab = 6, bc = 5, ac = 7, описана окружность. точка b делит д
4,5(18 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ