Обозначим треугольник АВС, С- прямой угол,
О- центр вписанной окружности, ихвестно, что цент вписанной в треугольник окружности лежит в точке пересечения биссектрис ( а , значит и набиссектрисе прямого угла)
СД- биссектриса, значит АД:ДВ=4х:3х
Опусти перпендикуляры из точки О на катеты - ОК на катет СВ и ОМ на катет АС они равны радиусу, те 7см.
тк угол С прямой, то ОК=МС=МО=СК=7см.
Вспомним, сто отезки касательных, проведенных из одной точки к окружности равны ( легко доказать) Т.е. КВ=ДВ=3х и АМ=АД =4х.
Получилось
АС=АМ+МС=4х+7
АВ=АД+ДВ=4х+3х=7х
СВ=СК+КВ=7+3х
Теперь составим уравнение применив теорему Пифагора
(4х+7)^{2}+(7+3х)^{2)=(7х)^{2}
решив его. найдем х потом умножим на 3 и на 4
1) S(кольца)=п*R^2-п*r^2=п*(R^2-r^2)=64п, отсюда R^2-r^2=64
Рассмотрим треугольник ОАС, где О - центр обеих окружностей, АС - сторона многоугольника. Т.к. он правильный, то высота ОВ, проведенная из О к стороне АС, разделит треугольник ОАС на 2 равных треугольника АВО и ВСО.
ОС^2-ОВ^2=ВС^2, т.к. ОС=R и ОВ=r, то R^2-r^2=ВС^2. Но R^2-r^2=64, значит ВС^2=64 и ВС=8. Сторона АС=2ВС=2*8=16
2) Рассмотрим квадрат АВСД: АС^2=АВ^2+ВС^2=2АВ^2=2*(корень из 12)^2=24.
АС=корень из 24=2*кореньиз 6
Центр окружности лежит на пересечении диагоналей, Тогда r=ОА=АС/2=корень из 6
Правильный 6-угольник диагоналями делится на 6 равносторонних треугольников. Рассмотрим 1 такой треугольник ОКЛ. Из центра О опустим высоту ОМ на сторону КЛ. ОМ=r=корень из 6. КМ=1/2*ОК
ОК^2=КМ^2+ОМ^2=(1/2*ОК)^2+ОМ^2. Подставляем значение ОМ и находим, что ОК=2*корень из 2
S(шестиугольника)=6*S(треугольника)=6*1/2*ОК*ОМ=6*1/2*(2*корень из 2)*(корень из 6)=12*корень из 3