6 000 см кв.
Объяснение:
1) Параллелограмм, вписанный в окружность, является прямоугольником.
2) Диагональ прямоугольника, вписанного в окружность, равна диаметру окружности d.
3) Согласно теореме Пифагора:
d^2 = a^2 + b^2,
где a и b - стороны прямоугольника, d - диаметр (в нашем случае он равен 65 * 2 = 130 см).
4) Решаем уравнение в частях:
d^2 = a^2 + b^2,
130^2 = 10^2 + 24^2
16900 = 100 + 576
16900 : 676 = 25 см кв - это одна квадратная часть,
следовательно, 1 часть = √ 25 = 5 см.
5) Стороны прямоугольника в см:
10 * 5 = 50 см,
24 * 5 = 120 см.
6) Площадь прямоугольника:
50 * 120 = 6 000 см кв.
ответ: 6 000 см кв.
Площадь полной поверхности призмы – сумма площади двух оснований и площади боковой поверхности.
Обозначим вершины призмы ABCDD1A1B1C1
S осн= половине произведения диагоналей.
АС=АА1:tg30°=6√3
BD=BB1:tg60°=6/√3
S ABCD=6√3•6/√3=36 см*
Площадь боковой поверхности - произведение высоты призмы на периметр основания, т.е. 6•4AB
Ромб - параллелограмм.
В параллелограмме сумма квадратов диагоналей равна сумме квадратов всех его сторон. Для ромба, стороны которого равны,
D²+d²=4AB².
(6√3)²+(6/√3)²=4AB²
AB=√(27+3))=√30
Sбок=6•4√30=24√30см²
S полн=2•36+24√30=24(3+√3)см²