М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sjsjxhahhshc
sjsjxhahhshc
23.09.2022 10:10 •  Геометрия

Как узнать радиус конуса и/или площадь нижней стороны зная его угол и высоту?

👇
Ответ:
vlad134631
vlad134631
23.09.2022
Пусть R радиус конуса
А Н его высота и α угл раствора(половина угла при вершине)
Тогда tgα=R/H
Отсюда R=H*tgα площади нижней стороны πR^2=π(tgα*H)^2
4,4(21 оценок)
Открыть все ответы
Ответ:
alexandur96
alexandur96
23.09.2022

Будем использовать следующие значения для сторон треугольника АВС: АВ=с, ВС=а, СА=b и его углов:

<А=а, <В=b, <C=y (a, b, y : Альфа, Бэта, Гама.)

Дано:

а=4, b=5, c=6.

Найти: a, b, y -?

Пусть b - наибольшая сторона, b<a+c.

По теореме косинусов находим наибольший угол b,

[Не обязательно писать, для ориентира: Квадрат стороны треугольника равняется сумме квадратов 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними.]

{b}^{2} = {a}^{2} + {c}^{2} - 2ac \times cos \beta

\cos\beta = \frac{a {}^{2} + c {}^{2} - b {}^{2} }{2ac} = \frac{16 + 36 - 25}{48} = 0,5625 = \\ = \frac{9}{16}

При основного тригонометрического тождества найдём Sin B

sin {}^{2} \beta + cos {}^{2} \beta = 1 \\ sin {}^{2} \beta = 1 - cos {}^{2} \beta \\ sin \beta = \sqrt{1 - \frac{81}{256} } = \\ = \sqrt{ \frac{175}{256} } = \frac{5 \sqrt{7} }{16}

С теоремы синусов найдём углы треугольника:

\frac{a}{ \sin( \alpha ) } = \frac{b}{ \sin( \beta ) } = \frac{c}{ \sin( \gamma ) }

Отсюда,

\sin( \alpha ) = \frac{a \sin( \beta ) }{b} = \frac{5 \sqrt{7} }{4} \times \frac{1}{5} = \frac{ \sqrt{7} }{4}

\sin( \gamma ) = \frac{c\sin( \beta ) }{b} = \frac{5 \sqrt{7} }{ 16} \times \frac{6}{5} = \frac{3 \sqrt{7} }{8}

С таблиц находим градусную меру углов:

а≈41°

b≈57°

Тогда,

у≈82°

ответ: 41° 57° 82°

4,7(12 оценок)
Ответ:
alenazakhar2000al
alenazakhar2000al
23.09.2022

1) Через пересекающиеся прямые  можно провести плоскость. ⇒ а и b лежат в одной плоскости. Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны. А1В1||А2В2.

∆ А1КВ1~А2КВ2, т.к. углы при пересечении параллельных оснований секущими а и b равны, и угол К - общий. 

Из подобия следует: КВ1:КВ2=А1В1:А2В2=3/4

Примем В1В2=х, тогда КВ2=14+х 

 14:(14+х)=3:4

56=42+3х ⇒ x=4 \frac{2}{3} ⇒ 

K B_{2}=18 \frac{2}{3} см

2) Медианы треугольника пересекаются,  параллельны плоскости альфа, следовательно,  плоскость треугольника, в которой они лежат,  параллельна плоскости альфа.

  СЕ и ВF параллельны ( дано), следовательно, через них можно провести плоскость, притом только одну.

 Если две параллельные плоскости пересечены третьей, 

то линии их пересечения параллельны.⇒ СВ||EF.

 Четырехугольник, у которого противоположные стороны  попарно параллельны, является параллелограммом, ч.т.д.


3) Все грани параллелепипеда ABCDA1B1C1D1 - квадраты со стороной a.⇒ этот параллелепипед - куб. 

  DA1В1С - прямоугольник, т.к. по т. о 3-х перпендикулярах диагонали А1D и В1С параллельных граней перпендикулярны ребрам А1В1 и DC .  Проведем через середины АD и ВC прямые КМ и ОН параллельно А1D и В1C, соединим К и О, М и Н. Пересекающиеся КО и КА параллельны пересекающимся АА1 и АD. ⇒ 

Плоскость сечения МКОН параллельна плоскости  DA1B1C  ⇒   . Стороны сечения КМНО пересекают ребра АА1, ВВ1, ВС и AD в их середине.  КМНО - прямоугольник. 

В параллельных гранях диагонали  А1D=B1C=a:sin45°=a√2

 КМ и ОН –– средние линии ∆ АА1D и ВВ1С соответственно и   равны половине А1D- равны \frac{a \sqrt{2} }{2}

КО=МН=АВ=а

Р (КМНО=2(МН+КМ)=2a+2•(a√2/2)=a•(2+√2)


1. через точку k не лежащую между параллельными плоскостями альфа и бета, проведены прямые a и b. пр
4,6(100 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ