Т.к. все углы в прав. мн-ке равны, то их сумма равна N*150, где N - кол-во углов;
2) С другой стороны , сумма углов любого мн-ка равна 180*( N-2), тогда получим уравнение N*150 =180*(N-2)
N*150 =180*N-360
360 = 30* N
N = 360:30=12
ответ: 12.
Пусть в ΔABC, AK — высота, AN — биссектриса ∠A, AE — медиана.
Из точки A к прямой BC проведены перпендикуляр AK (высота) и две наклонные. Cледовательно точка N принадлежит либо KB, либо KE.
Точка N совпадает с K, тогда AN = AK < AE.
Точка N совпадает с E, тогда AN = AE > AK.
Точка N лежит между точками K и E, тогда AK < AN < AE (так как ее проекция NK меньше EK — проекции AE).
По доказанному в задаче № 24, AN не может быть больше AE, т.е. точка N не может лежать между E и С Что и требовалось доказат
1)Найдите координаты точки пересечения прямых, заданными уравнениями
x+2y-5=0
3x-y-8=0
x+2y-5=0
3x-y-8=0
х=5-2у
3(5-2у)-у-8=0
15-6у-у-8=0
-7у=-7
у=1
х=5-2*1=3
ответ:(3;1)
2) В каких точках пересекается с осями координат прямая заданная уравнением:
2x-5y+20=0
при х=0 2*0-5у+20=0 Итак, первая точка (0;4)
5у=20
у=4
при у=0 2х-5*0+20=0 Итак, вторая точка (10;0)
2х=20
х=10
ответ: (0;4), (10;0)
3)Прямые y=x+4, y=-2x+1 пересекаются в некоторой точке О, найдите ее координаты.
х+4=-2х+1
х+2х=1-4
3х=-3
х=-1
у(-1)=-1+4=3
ответ: (-1;3)
внешний угол =180-150=30
а сумма внешних углов = 360
360/30=12