Проведем радиусы от центра окружности О до точек касания В и С. И соедини центр окружности с точкой А. рассмотрим получившиеся треугольники АВО и АСО, в них: угол АВО = угол АСО = 90 гр. (св-во касательных) , следовательно, треугольники АВО и АСО прямоугольные. А чтобы доказать равенство двух прямоуг. треуг-ов достаточно найти 2 равных элемента: - катет ОВ = катет ОС (радиусы окружности) - ОА - общ. гипотенуза из этого следует, что треугольники равны, следовательно все элементы этих треуг-ов равны. а следовательно равны и катеты АС и АВ ч. т. д.
В равнобедренном тр-ке высота, биссектриса и медиана равны. Тогда в прямоугольном тр-ке, образованном высотой (катет), боковой стороной (гипотенуза) и половиной основания (второй катет), синус 15° - это отношение противолежащего катета (высота) к гипотенузе. Отсюда высота равна 11*Sin15°=11*0?258 =2,85. Sin75° (половина угла при вершине) равен отношению половины основания к боковой стороне, то есть половина основания равна 11*Sin75°=11*0,966=10,6 Тогда площадь равна произведению высоты на половиу основания = 2,85*10,6=30,2