1. 32 см.
2. 53°, 53°, 127°,127°
3. Медиана равна 13 см
4. а=8 см, в=12 см
Объяснение:
1. Периметр - сумма сторон. Противолежащие стороны параллелограмма равны. Значит периметр равен 5+5+11+11=32 см
2. В ромбе противолежащие углы равны, а сумма всех углов 360°
Значит сумма двух углов 53+53=106°
Сумма двух других углов равна 360-106=254°. ТОгда один угол равен 127°
3. ΔАВС - прямоугольный, АВ=12, ВС=10, АК-медиана, проведенная к ВС. ВК=ВС=5 см.
ΔАВК - прямоугольный, АК - гипотенуза. АК²=АВ²+КВ²=144+25=169
АК=13 см
4. а и в стороны прямоугольника
Площадь равна а*в=96 см. а=96/в
а:в=2:3, а=2в/3
2в/3=96/в
2в²=288
в²=144
в=12
а=8
Прямоугольный треугольник с катетам 4 см вписан в окружность. найдите площадь правильного шестиугольника, описанного около данной окружности.
Объяснение:
Дано : ΔАВС вписан в окружность, ∠С=90° , СА=СВ=4 см, правильный шестиугольник описан около данной окружности.
Найти :S(правильного шестиугольника).
ΔАВС-прямоугольный, ∠С=90° , значит опирается на дугу в 180°⇒АВ диаметр. Найдем гипотенузу АВ по т. Пифагора
АВ=√( 4²+4²)=2√2 (см). Поэтому R=1/2*АВ=√2.
Шестиугольник описан около данной окружности , значит Для него √2 является радиусом вписанной окружности ,r₆= ( a₆√3) /2⇒
√2=( a₆√3) /2 или a₆=(2√2) /√3 (см)
S=1/2*Р*r
S=1/2*(6*(2√2) /√3 )*√2=12/√3=4√3 (cм²)
b=14см-основа
c=d=10см-боковая сторона
S=a+b/2 √c^2-((b-a)^2+c^2-d^2/2(b-a))^2
S=8+14/2 √100-((14-8)^2+100-100/2(14-8))^2
S=7√91
S=66.7см²