ОВ=ОВ=радиус, ОА перпендикулярна касательной АС, уголОАС=90, уголАОВ=2х, треугольник АОВ равнобедренный, проводим перпендикуляр ОК на АВ=медиане=биссектрисе , продлеваем ОК до пересечения с окружностью в точке Н, уголАОН=уголВОН=1/уголАОВ=2х/2=х,треугольник АОК прямоугольный уголОАК=90-уголАОН=90-х, уголВАС=уголОАС-уголОАК=90-(90-х)=х, уголВАС=уголАОН=х=1/2уголАОВ
В прямоугольном параллелепипеде диагонали равны. BD1=AC1=12 см. Тогда в прямоугольном треугольнике АВD1 катет АВ лежит против угла BD1A=30°(дано) и равен половине гипотенузы BD1. АВ=6см. В прямоугольном треугольнике BDD1 катеты BD и DD1 равны, так как угол BD1D=45°(дано) и по Пифагору равны 6√2. DD1=6√2см. В прямоугольном треугольнике BDА катет АD по Пифагору равен AD= √(BD²-АВ²) или AD=√(72-36)=6см. АD=6см. Итак, в данном параллелепипеде основание - квадрат со стороной 6см и высота =6√2см. ответ: измерения данного параллелепипеда равны 6см; 6см; 6√2см.