М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
диана2467
диана2467
26.11.2021 07:04 •  Геометрия

Восновании конуса проведены две равные хорды ав и вс, причём ∠авс =60°. через одну из хорд и вершину конуса проходит плоскость. вычислите объём конуса, если его сечение представляет собой равносторонний треугольник, площадь которого равна 9√3 см².

👇
Ответ:
RitkaRita
RitkaRita
26.11.2021

Обозначим вершину конуса М. 

Соединив  точки А и С, получим равнобедренный ∆ АВС с углом при В=60°, ⇒ ∆ АВС - равносторонний, для которого окружность, ограничивающая основание конуса - описанная. 

По условию сечение АМВ - равносторонний треугольник, и  стороны АВС равны его сторонам, т.к. АВ - общая их сторона.

S∆ АМВ=9√3

S ∆AMB=(a²√3):4 формула площади правильного треугольника. ⇒

(a²√3):4=9√3 ⇒ a²=4•9; a=√36=6

Формула радиуса описнной окружности R=a:√3

R=ВО=6:√3

Из ∆ ВОМ высота МО=√(BM*-BO*)=√(36-12)=2√6

Формула объема конуса V=S•h:3

S=πR²=π•36:3=12π

V=(12π•2√6):3=8π√6см³


Восновании конуса проведены две равные хорды ав и вс, причём ∠авс =60°. через одну из хорд и вершину
4,6(59 оценок)
Открыть все ответы
Ответ:
lbogdan2
lbogdan2
26.11.2021

Самое подробное решение. 

Если дуга 60 градусов, то это 1/6 окружности. Поэтому площадь сектора, ограниченного этой дугой и двумя радиусами, проведенными в концы дуги, равна 1/6 площади круга.

А хорда разбивает этот сектор на 2 фигуры - сегмент, площадь которого надо найти, и треугольник, который является равносторонним, поскольку угол при вершине - это центральный угол дуги, равный 60 градусам. 

Итак, радиус круга равен длине хорды, то есть 4, площадь круга pi*16; площадь сектора pi*16/6. Осталось вычислить площадь равностороннего треугольника со стороной 4, и отнять от площади сектора. 

Площадь треугольника равна (1/2)*4^2*sin(60) = 4*корень(3);

Искомая площадь сегмента pi*16/6 - 4*корень(3)

Это примерно 1,44937717929727.

4,7(48 оценок)
Ответ:
гол38
гол38
26.11.2021

D=4 => R=2

Если соединить концы хорды с центром окружности, то получится равносторонний треугольник, так как все стороны равны 2

Площадь  фигуры, ограниченной дугой окружности и стягивающей ее хордой

равна площади сектора минус площадь треугольника

Найдем площадь сектора

  S=(pi*R^2/360°)*A°,

ГДЕ А°- угол треугольника или угол сектора

  S=(pi*2^2/360)*60=4*pi*/6=2,09

Площадь равностороннего треугольника равна

  S=(sqrt(3)/4)*a^2

 S=(sqrt(3)/4)*4=sqrt(3)=1,73

 

То есть наша площадь равна

   S=2,09-1,73=0,36

4,4(86 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ