Дана правильная шестиугольная пирамида SABCDEF, в основании которой лежит правильный шестиугольник. Если стороны основания AB=BC=CD=DE=EF=18, то AO=BO=CO=DO=EO=FO=18. И тогда в прямоугольном треугольнике, например ΔSOD, образованном высотой SO, боковым ребром SD=15 и проекцией бокового ребра на основание DO, катет DO=18 будет больше гипотенузы SD=15. То есть, боковые ребра у пирамиды с такими размерами не сойдутся сверху в вершину S.
В условии задачи ОШИБКА! Такая пирамида не существует.
Тогда рассмотрим решение этой задачи в общем случае. Пусть боковые ребра SA=SB=SC=SD=SE=SF=b, стороны основания AB=BC=CD=DE=EF=AF=a.
Площадь боковой поверхности пирамиды состоит из шести равных равнобедренных треугольников.
ΔESD - равнобедренный, SE=SD=b, ED=a. Высота равнобедренного треугольника SK также является медианой ⇒ EK=KD=a/2
ΔSKD - прямоугольный, ∠SKD=90°. По теореме Пифагора
SD² = SK² + KD² ⇒ SK² = SD² - KD² = b² - (a/2)²
Площадь боковой поверхности пирамиды
===========================================
Допустим, боковое ребро пирамиды b=13, сторона основания a=10
==============================================
Допустим, боковое ребро пирамиды b=41, сторона основания a=18
Вот параллелограмм - основание параллелепипеда на рисунке. а) Меньшая высота h = BP = AP = AB*sin 45 = a√2*1/√2 = a, потому что треугольник ABP - прямоугольный и равнобедренный. Высота параллелепипеда H = AA1 = h = a. б) Диагональная плоскость ABC1D1 лежит под углом α к основанию tg α = H / AD = a / (2a) = 1/2 α = arctg(1/2) в) Площадь боковой поверхности параллелепипеда S(бок) = 2*AB*H + 2*AD*H = 2*a√2*a + 2*2a*a = 2a^2*(√2 + 2) г) Площадь основания S(осн) = AD*h = 2a*a = 2a^2 Полная площадь поверхности S = 2*S(осн) + S(бок) = 4a^2 + 2a^2*(√2 + 2) = 2a^2*(√2 + 4)
Задача имеет два решения. 1) Дан внешний угол при вершине равнобедренного треугольника. Тогда сумма двух углов при основании равна 130·. Но углы при основании равны, значит каждый из них равен 130 : 2=65° Третий угол при вершине будет смежным с углом в 130°. Третий угол треугольника равен 180-130=50°. ответ: 50°; 65°; 65°. 2) Если дан внешний угол при основании, то углы треугольника при основании равны будут по 50° , то есть 180-130=50. Угол при вершине равнобедренного треугольника равен 80°. ответ: 80°; 50°; 50°.
Дана правильная шестиугольная пирамида SABCDEF, в основании которой лежит правильный шестиугольник. Если стороны основания AB=BC=CD=DE=EF=18, то AO=BO=CO=DO=EO=FO=18. И тогда в прямоугольном треугольнике, например ΔSOD, образованном высотой SO, боковым ребром SD=15 и проекцией бокового ребра на основание DO, катет DO=18 будет больше гипотенузы SD=15. То есть, боковые ребра у пирамиды с такими размерами не сойдутся сверху в вершину S.
В условии задачи ОШИБКА! Такая пирамида не существует.
Тогда рассмотрим решение этой задачи в общем случае. Пусть боковые ребра SA=SB=SC=SD=SE=SF=b, стороны основания AB=BC=CD=DE=EF=AF=a.
Площадь боковой поверхности пирамиды состоит из шести равных равнобедренных треугольников.
ΔESD - равнобедренный, SE=SD=b, ED=a. Высота равнобедренного треугольника SK также является медианой ⇒ EK=KD=a/2
ΔSKD - прямоугольный, ∠SKD=90°. По теореме Пифагора
SD² = SK² + KD² ⇒ SK² = SD² - KD² = b² - (a/2)²
Площадь боковой поверхности пирамиды
===========================================
Допустим, боковое ребро пирамиды b=13, сторона основания a=10
==============================================
Допустим, боковое ребро пирамиды b=41, сторона основания a=18