М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
котя382
котя382
09.03.2020 04:56 •  Геометрия

Стороны основания правильной шестиугольной пирамиды равны 18, боковые ребра равны 15. найдите площадь боковой поверхности этой пирамиды.

👇
Ответ:
ЛераТян2000
ЛераТян2000
09.03.2020

Дана правильная шестиугольная пирамида SABCDEF, в основании которой лежит правильный шестиугольник. Если стороны основания AB=BC=CD=DE=EF=18, то AO=BO=CO=DO=EO=FO=18. И тогда в прямоугольном треугольнике, например ΔSOD, образованном высотой SO, боковым ребром SD=15 и проекцией бокового ребра на основание DO, катет DO=18 будет больше гипотенузы SD=15. То есть, боковые ребра у пирамиды с такими размерами не сойдутся сверху в вершину S.

В условии задачи ОШИБКА! Такая пирамида не существует.

Тогда рассмотрим решение этой задачи в общем случае. Пусть боковые ребра SA=SB=SC=SD=SE=SF=b, стороны основания AB=BC=CD=DE=EF=AF=a.

Площадь боковой поверхности пирамиды состоит из шести равных равнобедренных треугольников.

ΔESD - равнобедренный, SE=SD=b, ED=a. Высота равнобедренного треугольника SK также является медианой ⇒ EK=KD=a/2

ΔSKD - прямоугольный, ∠SKD=90°. По теореме Пифагора

SD² = SK² + KD² ⇒ SK² = SD² - KD² = b² - (a/2)²

\boldsymbol{SK=\sqrt{b^2-\Big(\dfrac{a}{2}\Big)^2}}

S_{SED}=\dfrac{ED\cdot SK}{2}=\dfrac{a\cdot \sqrt{b^2-(\frac{a}{2})^2}}{2}

Площадь боковой поверхности пирамиды

\boxed {\boldsymbol {S = 6\cdot S_{SED}=3a\cdot \sqrt{b^2-\Big(\dfrac{a}{2}\Big)^2}}}

===========================================

Допустим, боковое ребро пирамиды b=13, сторона основания a=10

S = 3a\cdot \sqrt{b^2-\Big(\dfrac{a}{2}\Big)^2}} = 3\cdot 10\cdot \sqrt{13^2-\Big(\dfrac{10}{2}\Big)^2} =\\ \\ ~~~~=30\cdot \sqrt{169-25} =30\cdot 12=360

==============================================

Допустим, боковое ребро пирамиды b=41, сторона основания a=18

S = 3a\cdot \sqrt{b^2-\Big(\dfrac{a}{2}\Big)^2}} = 3\cdot 18\cdot \sqrt{41^2-\Big(\dfrac{18}{2}\Big)^2} =\\ \\ ~~~~=54\cdot \sqrt{1681-81} =54\cdot 40=2160


Стороны основания правильной шестиугольной пирамиды равны 18, боковые ребра равны 15. найдите площад
4,7(58 оценок)
Открыть все ответы
Ответ:
LindaKron
LindaKron
09.03.2020
Вот параллелограмм - основание параллелепипеда на рисунке.
а) Меньшая высота h = BP = AP = AB*sin 45 = a√2*1/√2 = a, потому что треугольник ABP - прямоугольный и равнобедренный.
Высота параллелепипеда H = AA1 = h = a.
б) Диагональная плоскость ABC1D1 лежит под углом α к основанию
tg α = H / AD = a / (2a) = 1/2
α = arctg(1/2)
в) Площадь боковой поверхности параллелепипеда
S(бок) = 2*AB*H + 2*AD*H = 2*a√2*a + 2*2a*a = 2a^2*(√2 + 2)
г) Площадь основания
S(осн) = AD*h = 2a*a = 2a^2
Полная площадь поверхности
S = 2*S(осн) + S(бок) = 4a^2 + 2a^2*(√2 + 2) = 2a^2*(√2 + 4)

Основанием прямого параллелепипеда abcda₁b₁c₁d₁ является параллелограмм abcd, стороны которого равны
4,7(51 оценок)
Ответ:
ALSY0504
ALSY0504
09.03.2020
Задача имеет два решения.
1) Дан внешний угол при вершине равнобедренного треугольника. Тогда сумма двух углов при основании равна 130·. Но углы при основании равны, значит каждый из них равен 130 : 2=65° Третий угол при вершине будет смежным с углом в 130°. Третий угол треугольника равен 180-130=50°. ответ: 50°; 65°; 65°.
2) Если дан внешний угол при основании, то углы треугольника при основании равны будут по 50° , то есть 180-130=50.
Угол при вершине равнобедренного треугольника равен 80°. ответ: 80°; 50°; 50°.
4,8(70 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ