Из условия, что четыре ребра куба параллельны диагонали основания пирамиды, делаем вывод: вершины основания куба лежат на осях основания пирамиды, а 4 других вершины куба лежат на апофемах пирамиды.
Проведём осевое сечение пирамиды через 2 противоположные апофемы.
Куб рассечётся по диагонали, его сечение - прямоугольник. Пусть высота его равна "х", ширина как диагональ равна "х√2".
Из подобия треугольников сечения составим пропорцию:
(9 - х)/(х√2/2) = 9/2.
9х√2 = 36 - 4х,
х(4 + 9√2) = 36,
х = 36/(4 + 9√2) ≈ 2,152090371 .
ответ: длина ребра куба примерно равна 2,15.
.
Диагонали равны , значит трапеция равнобедренная
P =AD +BC +AB +CD =2MN+2AB = 2(MN +AB ) =2*7 +3) =2*10 =20 .
AD и BC основания трапеции (AD || BC) , AB и CD равные боковые ребра
MN -средняя линия (равна полусумме оснований).