1. 13
Объяснение:
1.
Проведём FH перпендикулярно DE следовательно треугольник FHE прямоугольный.Треугольник DCE прямоугольный следовательно треугольник FCE тоже прямоугольный.
EF- биссектриса следовательно угол 1 = углу 2.Следовательно FHE= FCE(по острому углу) следовательно FH=FC=13
ответ: 13
2.
Строим острый угол В. Из вершины угла проводим окружность радиусом равным катету, и отмечаем точку пересечения А. Так как треугольник — прямоугольный, то восстанавливаем перпендикуляр из точки А. Полученная точка пересечения С. Соединяем попарно вершины треугольника. Искомый треугольник построен.
(Рисунок в закрепе)
3.
1. На прямой "а" откладываем данный нам угол А и обозначаем на одной из сторон этого угла ДАННУЮ нам точкуВ.
2. Строим БИССЕКТРИСУ этого угла. Для этого циркулем проводим окружность с центром в точке А произвольного радиуса, а затем из точек пересечения этой окружности со сторонами угла "M" и "N" радиусом r=MN проводим окружности. Биссектриса проходит через точки пересечения этих окружностей.
3. Из данной нам точки В возводим перпендикуляр к стороне угла, на которой расположена точка В (как строить перпендикуляр, объяснять не надо?).
В месте пересечения этого перпендикуляра и биссектрисы и расположен центр О искомой окружности радиуса R=ОВ, так как центр вписанной в угол окружности РАВНОУДАЛЕН от сторон угла - то есть лежит на биссектрисе угла.