Объяснение:
Треугольник FAC и его ортоцентр - это центр вписанной окружности треугольника ABC
Объяснение: Автор задания не совсем удачно обозначил центры вписанной и описанной окружностей. Обычно центр вписанной окружности - это точка I, центр описанной - точка O.
С разрешения автора буду считать, что центр вписанной окружности - это I. Кстати, картинка не совсем удачная. Дело в том, что, как известно, на одной прямой (прямой Эйлера) находятся центр O описанной окружности, центроид (то есть точка G пересечения медиан) и ортоцентр H. Центр же вписанной окружности лежит на этой прямой только если треугольник равнобедренный. Перехожу к решению.
Каждый из углов тр-ка ABC будем обозначать одной буквой - A, B, C. Значок градуса будем опускать. Из равнобедренного тр-ка EAC имеем: угол ECA=90-(A/2); из равноб. тр-ка ACD имеем: CAD=90-(C/2). Поэтому AFC=(A+C)/2. I лежит на биссектрисе угла BAC, то есть IAC=A/2, откуда DAI=DAC-IAC=90-(A+C)/2. То есть AFC+FAI=90, откуда AI перпендикулярно FC. Аналогично CI перпендикулярно AF. Следовательно, центр вписанной окружности треугольника ABC является по совместительству - ортоцентром треугольника FAC.
Угол АВD равен 100%
Объяснение:
В условии дано, что углы АBM и DBM равны, примем их за х. Дальше в условии сказано, что угол АВМ на 30% меньше чем угол DBC, а значит угол DBC на 30% больше чем угол АВМ, следовательно мы можем его записать как х+30.
Из этого всего у нас выходит уравнение:
х+х+х+30=180
А теперь мы его решаем как любое стандартное уравнение.
3х+30=180
3х=180-30=150
х=150:3=50 (угол АВМ и DВМ)
Следовательно угол АВD равен х+х, что равно 100%, а раз угол АВD равен 100% следовательно угол DBC равен 80%, так как 180-100=80
Угол А равен 30 градусов
2) По свойству прямоугольного треугольника напротив угла 30 градусов лежит катет равный половине гипотенузы значит ВС=12/2=6 см
ответ:6 см