Решите! последние , всё потратила, никто не решает! радиус вписанной в ромб окружности равен 5, а один из углов ромба равен 60°. найти длину большей диагонали ромба.
ответ будет 20 проводим радиус в точку касания и он будет перпендекулярен стороне ромба. Про углы надеюсь понятно. В прямоугольном треугольнике катет лежащий против угла в 30 градусов равен половине гипотенузы и по этому составляем соотношение и находим половину меньшей диагонали. Дальше рассматриваем треугольник в левом верхнем углу OB равняется 10 корней из 3-х на три. Опять же в этом прямоугольнике есть угол 30 градусов , по нему находим гипотенузу, а потом по теореме Пифагора находим AO , оно равно 10 сл. диагональ равна 20
1. средние линии треугольника находятся втом же отношении, что и стороны треугольника. обозначим стороны треугольника буквами а, в и с. тогда а: в: с=2: 3: 4, т.е. а=2х, в=3х, с=4х по условию, периметр р=45см, т.е. а+в+с=45 2х+3х+4х=45 9х=45 х=45: 9 х=5(см) а=2х=2*5=10(см) в=3х=3*5=15(см) с=4х=4*5=20(см) ответ: 10 см, 15 см, 20 см.
Угол BAE равен EAD (AE - биссектриса BAD) BD параллельна AD (прямоугольник является параллелограммом по условию) угол BEA равен EAD (смежные углы при пересечении параллельных прямых общей секущей прямой AE) Следовательно углы BAE и BEA равны и треугольник BAE - равнобедренный, т.е. |AB| = |EB|
По условию, биссектриса делит сторону на отрезки 12 и 7 см. Если |BE| = 7 см, то периметр P = 4*7 + 2*12 = 52 Если |BE| = 12 см, то периметр P = 4*12 + 2*4 = 56
проводим радиус в точку касания и он будет перпендекулярен стороне ромба. Про углы надеюсь понятно. В прямоугольном треугольнике катет лежащий против угла в 30 градусов равен половине гипотенузы и по этому составляем соотношение и находим половину меньшей диагонали. Дальше рассматриваем треугольник в левом верхнем углу OB равняется 10 корней из 3-х на три. Опять же в этом прямоугольнике есть угол 30 градусов , по нему находим гипотенузу, а потом по теореме Пифагора находим AO , оно равно 10 сл. диагональ равна 20