Обозначим параллелограмм ABCD ,биссектриса проведена из угла В к стороне AD в точке M .Угол А =180°-150°=30°(сумма соседних углов параллелограмма 180°) .∠ABM равен углу BMC =150°÷2=75°(так как BM - биссектриса) .∠BMA треугольника ABM равен 180°-75°-30°=75°,значит треугольник ABM -равнобедренный с основанием BM ,поэтому AB=AM=16 см .AD=AM+MD=16+5= 21 см .Площадь параллелограмма ABCD найдём по формуле S=a×b×sinα(где а и b стороны параллелограмма ,а α-угол между ними).S=16×21×sin30°=336×0,5=168 см² .
Дано: треугольник АВС, в котором АВ=ВС, внешний угол А1ВС = 108град. Найти: углы треугольника Решение:Сумма смежных углов АВС и А1ВС равна 180град, Значит угол АВС=180-108=72град. Сумма всех углов треугольника тоже составляет 180 град. И на 2 оставшихся угла приходится 180-72=108град. Треугольник АВС равнобедренный, значит у него углы при основании АС равны. То есть угол ВАС равен углу ВСА и составляют в сумме 108град. 108:2=54град каждый из данных углов. ответ:угол АВС=72град, уголВАС=54град уголВСА=54град Всё! Вот как-то так...Начертишь сам.
Решение на фото.